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Abstract. We consider the infinite dimensional linear control system de-
scribed by the population dynamics model of Lotka-McKendrick with spatial
di↵usion. Considering control functions localized with respect to the spatial
variable but active for all ages, we prove that the whole population can be
steered to zero in any positive time. The main novelty we bring is that, un-
like the existing results in the literature, we can also control the population of
ages very close to 0. Another novelty brought in is the employed methodology:
as far as we know, the present work is the first one remarking that the null
controllability of the considered system can be obtained by using the Lebeau-
Robbiano strategy, originally developed for the null-controllability of the heat
equation.

1. Introduction. We consider a linear controlled age-structured population model
with spatial di↵usion described by the following system:

8
>>>>>>>>><

>>>>>>>>>:

@tp(t, a, x) + @ap(t, a, x) + µ(a)p(t, a, x)��p(t, a, x)

= �!(x)u(t, a, x), t > 0, a 2 (0, a†), x 2 ⌦,

@p
@⌫

(t, a, x) = 0, t > 0, a 2 (0, a†), x 2 @⌦,

p(t, 0, x) =

Z a†

0

�(a)p(t, a, x) da, t > 0, x 2 ⌦,

p(0, a, x) = p0(a, x), a 2 (0, a†), x 2 ⌦.
(1)

In the above equations:

• ⌦ ⇢ Rn, n > 1, denotes a smooth connected bounded domain and � is the
laplacian with respect to the variable x;
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•
@

@⌫
denotes the derivation operator in the direction of the unit outer normal

to @⌦. We thus have homogeneous Neumann boundary conditions, thus the
considered population is isolated from the exterior of ⌦;

• p(t, a, x) denotes the distribution density of the population at time t, of age
a at spatial position x 2 ⌦;

• p0 denotes the initial population distribution;
• a† 2 (0,+1) is the maximal life expectancy;
• �(a) and µ(a) are positive functions denoting respectively the birth and death

rates, which are supposed to be independent of t and x;
• ! ⇢ ⌦ is a nonempty open susbet of ⌦ and �! denotes the characteristic

function of !.

We make the following classical assumptions on � and µ:

(H1) � 2 L
1(0, a†), �(a) > 0 for almost every a 2 (0, a†),

(H2) µ 2 L
1[0, a⇤] for every a

⇤
2 (0, a†), µ(a) > 0 for almost every a 2 (0, a†),

(H3)

Z a†

0
µ(a) da = +1.

We also introduce the function

⇡(a) := exp

✓
�

Z a

0
µ(s) ds

◆
, (2)

which is the probability of survival of an individual from age 0 to a.
Our main result is

Theorem 1.1. With the above notations and assumptions, for every ⌧ > 0 and for

every p0 2 L
2((0, a†)⇥⌦), there exists u 2 L

1((0, ⌧);L2((0, a†)⇥!)) such that the

solution p of 1 satisfies

p(⌧, a, x) = 0 (a 2 (0, a†), x 2 ⌦ a.e.). (3)

The null-controllability of the the system modelling age-dependant population
dynamics is by now well understood in the case in which di↵usion is neglected
(see Barbu, Ianelli and Martcheva [6] and Hegoburu, Magal, Tucsnak [10]). In the
case when spatial di↵usion is taken into account, namely for 1, the particular case
when the control acts in the whole space (the case corresponding to ! = ⌦) was
investigated by S. Aniţa (see [5], p 148). The case when the control acts in a spatial
subdomain ! was firstly studied by B. Ainseba [1], where the author proves the null
controllability of the above system 1, except for a small interval of ages near zero.
The case when the control acts in a spatial subdomain ! and also only for small
age classes was investigated by B. Ainseba and S. Aniţa [2], for initial data p0 in a
neighborhood of the target p̃. Related approximate and exact controllability issues
have also been studied in Ainseba and Langlais [4], Ainseba and Iannelli [3], Traore
[22], Kavian and Traore [15].

We also mention that the controllability of related degenerated parabolic systems
(namely of Kolmogorov type), not containing the renewal term, has been studied
in Beauchard [7], Beauchard and Pravda-Starov [8].

The main novelty (with respect to the literature quoted above) brought in The-
orem 1.1 is in our case u can be chosen such that 3 holds for every a 2 (0, a+)
instead of (�, a+), with � > 0, as it has been done, for instance, in [1]. We can thus
find a control driving to zero the whole population, without excluding very young
individuals. Moreover, we do not assume that the birth rate vanishes for small ages.
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The remaining part of this work is organized as follows. In Section 2 we recall
some basic results on the Lotka-McKendrick semigroup, with or without spatial
di↵usion, and we state a null controllability result associated to system 1 without
spatial di↵usion. Section 3 is devoted to study the null controllability of low fre-
quencies for the solution of system 1. We prove the main result in Section 4, by
using a version of the Lebeau-Robbiano strategy.

Notation. In all what follows, C will denote a generic constant, depending only of
the coe�cients in 1, on ⌦ and !, whose value may change from line to line.

2. Some background on the Lotka-McKendrick semigroup. In this section
we recall, with no claim of originality, some existing results on the population
semigroup for the linear age-structured model without and with spatial di↵usion.
In particular, we recall the structure of the spectrum of the semigroups generators,
together with some controllability results concerning the free di↵usion case.

2.1. The free di↵usion case. In this paragraph we remind some results on the dif-
fusion free case, which is described by the so-called McKendrick-Von Foster model.
With one exception, we do not give proofs and we refer, for instance, to Song et al.
[20] or Inaba [12] for a detailed presentation of these issues.

The considered system is:
8
>>><

>>>:

@tp(t, a) + @ap(t, a) = �µ(a)p(t, a), t > 0, a 2 (0, a†),

p(t, 0) =

Z a†

0
�(a)p(t, a) da, t > 0,

p(0, a) = p0(a), a 2 (0, a†),

(4)

where µ and � satisfy the assumptions in Theorem 1.1.
The above system is described by the operator A0 defined by

D(A0) =

⇢
' 2 L

2[0, a†] | '(0) =

Z a†

0
�(a)'(a) da; �

d'

da
� µ' 2 L

2[0, a†]

�
,

A0' = �
d'

da
� µ' (' 2 D(A0)).

(5)

Theorem 2.1. The operator A0 defined by 5 has compact resolvent and its spectrum

is constituted of a countable (infinite) set of isolated eigenvalues with finite algebraic

multiplicity. The eigenvalues (�0
n)n>1 of A0 (counted without multiplicity) are the

solutions of the characteristic equation

F (�) :=

Z a†

0
�(a)e��a

⇡(a) da = 1. (6)

The eigenvalues (�0
n)n>1 are of geometric multiplicity one, the eigenspace associated

to �
0
n being the one-dimensional subspace of L

2(0, a†) generated by the function

'
0
n(a) = e

��0
n⇡(a) = e

��0
na�

R a
0 µ(s) ds

.

Finally, every vertical strip of the complex plane ↵1 6 Re(z) 6 ↵2, ↵1,↵2 2 R,
contains a finite number of eigenvalues of A0.

Theorem 2.2. The operator A0 defined by 5 has a unique real eigenvalue �
0
1.

Moreover, we have the following properties :

1. �
0
1 is of algebraic multiplicity one;
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2. �
0
1 > 0 (resp. �

0
1 < 0) if and only if F (0) > 1 (resp. F (0) < 1);

3. �
0
1 is a real dominant eigenvalue:

�
0
1 > Re(�0

n), 8n > 2. (7)

It is well known (see, for instance, Song et al. [20] or Kappel and Zhang [14])
that A generates a C

0 semigroup of linear operators in L
2[0, a†] which we denote

by TA0 = (TA0
t )t>0. We also have the following useful result (see, for instance, [12,

p 23]):

Proposition 1. The semigroup TA0 generated on L
2([0, a†]) by A0 is compact for

t > a†.

According to Zabczyk [23, Section 2]), this implies in particular that

!a(A0) = !0(A0),

where !a(A0) := lim
t!+1

t
�1 ln kTA0

t kL2(0,a†) denotes the growth bound of the semi-

group TA0
t and !0(A0) := sup{Re� | � 2 �(A0)} the spectral bound of A0. It is

worth noticing that the above condition ensures that the exponential stability of
TA0 is equivalent to the condition !0(A0) < 0. According to Theorem 2.1 and 2.2,
it follows that the exponential stability of TA0 is equivalent to the condition �

0
1 < 0,

where �0
1 < 0 is the unique real solution to the characteristic equation defined by 6.

The free di↵usion control problem associated to system 1 writes as
8
>>><

>>>:

@tp(t, a) + @ap(t, a) + µ(a)p(t, a) = v(t, a), t > 0, a 2 (0, a†),

p(t, 0) =

Z a†

0
�(a)p(t, a) da, t > 0,

p(0, a) = p0(a), a 2 (0, a†),

(8)

where v is the control function. Let us state a null controllability result for system
8:

Proposition 2. Under the assumptions of Theorem 1.1, for every ⌧ > 0, there

exists v 2 L
1((0, ⌧);L2(0, a†)) such that the solution p of 8 satisfies

p(⌧, a) = 0 (a 2 (0, a†) a.e.).

Moreover, we have

kvkL1((0,⌧);L2(0,a†)) 6
sup

�2[0,⌧ ]
kTA0

� kL2(0,a†)

⌧
kp0kL2(0,a†). (9)

Proof. Let ⌧ > 0. For almost every (t, a) 2 (0, ⌧)⇥ (0, a†), we set

v(t, a) = �
1

⌧
(TA0

t p0)(a) (t 2 (0, ⌧), a 2 (0, a†)). (10)

It is easy to check that the (mild) solution p of 8, given by

p(t, a) = TA0
t p0(a) +

Z t

0
TA0
t��v(�)(a) d�, (11)

with v defined in 10, satisfies p(⌧, ·) = 0. Moreover, the cost stated in inequality 9
follows from the definition of the control v given by 10.
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2.2. The population dynamics with di↵usion. The existence of a semigroup on
L
2((0, a†)⇥⌦) describing the linear age-structured population model with di↵usion

coe�cient and age dependent birth and death rates, with homogeneous Neumann
boundary conditions has been proved in Huyer [11] (see also [9] for the case of
homogeneous Dirichlet boundary conditions).

More precisely, let X := L
2((0, a†) ⇥ ⌦) and define the following unbounded

operator A on X:

D(A) = {' 2 X | ' 2 C([0, a†];L
2(⌦)) \ L

2([0, a†], H
1(⌦)),

'(0, x) =
R a†
0 �(a)'(a, x) da; �

d'

da
� µ'+�' 2 X},

A' = �
d'

da
� µ'+�' (' 2 D(A)).

(12)

The generator A of the population semigroup can be seen as the sum of a pop-
ulation operator without di↵usion �d/da � µI and a spatial di↵usion term �. It
turns out that spectral properties of A can be easily obtained from those of these
two operators.

Theorem 2.3. Let 0 = �0 < �1 6 �2 6 . . . be the increasing sequence of eigenva-

lues of �� with Neumann boundary conditions and let ('n)n>0 be a corresponding

orthonormal basis of L
2(⌦). Let (�0

n)n>1 and ('0
n)n>1 be respectively the sequence

of eigenvalues and eigenfunctions of the free di↵usion operator A0 defined by 5 (see

Theorem 2.1). Then the following assertions hold:

1. The eigenvalues of A are given by

�(A) = {�
0
i � �j | i 2 N⇤

, j 2 N}.

2. A has a dominant eigenvalue:

�1 = �
0
1 > Re(�), 8� 2 �(A), � 6= �1.

3. The eigenspace associated to an eigenvalue � of A is given by

Span{'0
i (a)'j(x) = e

��0
ia⇡(a)'j(x) | �

0
i � �j = �}.

Figure 1. The spectrum of the free di↵usion operator A0 (green
crosses) and of �� (red circles)
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Since the operator A generates a C
0 semigroup of linear operators in X which

we denote by TA = (TA
t )t>0, this allows to define the concept of (mild) solution of

1 in the following standard way: we say that p is a mild solution of 1 if

p(t, ·) = TA
t p0 + �tu (t > 0, u 2 L

2([0,1);X)), (13)

where the control operator B 2 L(X) is defined by

Bu = �!u (u 2 X),

and where

�tu =

Z t

0
TA
t��Bu(�) d� (t > 0, u 2 L

2([0,1);X)). (14)

It is worth noticing, for instance by using a spectral decomposition, that the
semigroup TA is exponentially stable if �0

1 < 0, where we recall that �0
1 denotes the

unique real solution to the characteristic equation defined by 6.

Remark 1. In order to prove the null controllability of system 1, we may assume,
without loss of generality, that the so called reproductive number satisfies

Z a†

0
�(a)⇡(a) da < 1, (15)

which implies that both semigroups TA0 and TA are exponentially stable - see the

above results. Indeed, in the case where

Z a†

0
�(a)⇡(a) da > 1, we may consider the

auxiliary system
8
>>>>>>>>><

>>>>>>>>>:

@tz(t, a, x) + @az(t, a, x) + µ̃(a)z(t, a, x)��z(t, a, x)

= �!(x)v(t, a, x), t > 0, a 2 (0, a†), x 2 ⌦,

@z
@⌫

(t, a, x) = 0, t > 0, a 2 (0, a†), x 2 @⌦,

z(t, 0, x) =

Z a†

0

�(a)z(t, a, x) da, t > 0, x 2 ⌦,

z(0, a, x) = p0(a, x), a 2 (0, a†), x 2 ⌦,
(16)

with µ̃(a) := µ(a) + �, where � > 0 is large enough to have
Z a†

0
�(a)e�

R a
0 µ̃(s) ds da < 1.

Suppose that the above system 16 is null controllable with control function v. Then,
system 1 is null controllable with control function u = e

�t
v, which has the same

regularity as v.

From now on, without loss of generality (see Remark 1), we assume that both
semigroups TA0 and TA are exponentially stable, which implies that there exists a
constant C > 0 and a constant M > 0 such that for every t > 0, we have

kTA0
t kL(L2[0,a†]) 6 C and kTA

t kL(X) 6 M (t > 0). (17)

3. Low frequency control. In this section, we prove that the projection of the
state trajectory of 1 on an infinite subspace of X (defined using the eigenfunctions
of the Neumann Laplacian) can be steered to zero in any time and we estimate the
norm of the associated control. More precisely, let {'j}j>0 be an orthonormal basis
in L

2(⌦) formed of eigenvectors of the Neumann Laplacian and let (�j)j>0 be the
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corresponding non decreasing sequence of eigenvalues. In other words ('j)j>0 is an
orthonormal basis in L

2(⌦) such that for every j > 0 we have
8
<

:

��'j = �j'j in ⌦,

@'j

@⌫
= 0 on @⌦.

(18)

In the sequel, for any µ > 0, we denote by

N (µ) := Card{k : �k 6 µ}, (19)

Eµ := Span{'k : �k 6 µ},

and ⇧Eµ : L2(⌦) ! L
2(⌦) the orthogonal projection from L

2(⌦) onto Eµ. The
main result of this section is:

Proposition 3. Let µ > 0, and let T > 0. There exists uµ 2 L
1((0, T );X) such

that the solution p of 1 satisfies

⇧Eµp(T, a, ·) = 0 (a 2 (0, a†) a.e.)

Moreover, we have the following estimate:

kuµkL1((0,T );X) 6
Ce

C
p
µ

T
kp0kX .

The main ingredient of the proof is an inequality involving the eigenfunctions of
the Neumann Laplacian. This inequality, obtained in Jerison and Lebeau [13], can
also obtained by combining results and methods from Lebeau and Robbiano [16],
[17].

Theorem 3.1. For any non-empty open subset ! of ⌦, there exists C > 0 such

that for any µ > 0, for any sequence (aj)j>0 ⇢ R, we have

X

j:�j6µ

|aj |
2 6 Ce

C
p
µ

Z

!

������

X

j:�j6µ

aj'j(x)

������

2

dx. (20)

We will also use the following classical lemma, whose proof can be found, for
instance, in [21] - Section 2.

Lemma 3.2. Suppose that W,Y,Z are Hilbert spaces, F 2 L(W,Z) and that G 2

L(Y, Z). Denote by A
⇤
the adjoint of an operator A. Then the following statements

are equivalent:

(i) there exists c > 0 such that

kF
⇤
zkW 6 ckG

⇤
zkY (z 2 Z);

(ii) there exists H 2 L(W,Y ) such that GH = F and kHkL(W,Y ) 6 c.

Proof of Proposition 3. Note that the solution p of 1 writes

p(t, a, ·) =
+1X

j=0

p
j(t, a)'j in L

2(⌦), a.e. in (0, T )⇥ (0, a†),
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where p
j denotes the solution of

8
>>>>><

>>>>>:

@tp
j(t, a) + @ap

j(t, a) + (µ(a) + �j)p
j(t, a) =

Z

!
u(t, a, x)'j(x) dx,

p
j(t, 0) =

Z a†

0
�(a)pj(t, a) da,

p
j(0, a) = p

j
0(a),

(21)

and where

p0(a, ·) =
+1X

j=0

p
j
0(a)'j in L

2(⌦), a.e. a 2 (0, a†).

The aim is to solve the following moment problem: find u 2 L
1((0, T );X) such

that for every j 2 [0,N (µ)], we have
Z

!
uµ(t, a, x)'j(x) dx = vj(t, a) ((t, a) 2 (0, T )⇥ (0, a†) a.e.), (22)

where vj denotes a null control associated to the system
8
>>><

>>>:

@tp
j(t, a) + @ap

j(t, a) + (µ(a) + �j)p
j(t, a) = vj(t, a), t > 0, a 2 (0, a†),

p
j(t, 0) =

Z a†

0
�(a)pj(t, a) da, t > 0,

p
j(0, a) = p

j
0(a), a 2 (0, a†).

(23)
Recall from Proposition 2 and assumptions stated in Remark 1 that for every j >

0, there exists vj 2 L
1((0, T );L2(0, a†)) so that the solution p

j of the above system
23 satisfies p

j(T, a) = 0 for almost every a 2 (0, a†), with kvjkL1((0,T );L2(0,a†)) 6
C
T kp

j
0kL2(0,a†), where C is a constant independent of �j (since we can choose vj(t, a)

= �
e�t�j

T (TA0
t p

j
0)(a)).

Let µ > 0. Define the map G : L2(!) ! RN (µ)+1 by

Gu :=

✓Z

!
u(x)'j(x) dx

◆

06j6N (µ)

.

It is easy to check that for every w = (wj)06j6N (µ) 2 RN (µ)+1, we have

G
?
w =

N (µ)X

j=0

wj'j . (24)

Inequality 20 ensures that for every w 2 RN (µ)+1, we have

kwkRN(µ)+1 6 Ce
C
p
µ
kG

?
wkL2(!). (25)

By Lemma 3.2 with W = Z = RN (µ)+1, Y = L
2(!) and F = IdL(RN(µ)+1), it

follows that there exists H 2 L(RN (µ)+1
, L

2(!)) such that GH = IdL(RN(µ)+1).

Moreover, kHkL(RN(µ)+1) 6 Ce
C
p
µ so that for every w 2 RN (µ)+1, there exists

u := H(w) 2 L
2(!) such that Gu = w and kukL2(!) 6 Ce

C
p
µ
kwkRN(µ)+1 .

Let (t, a) 2 (0, T ) ⇥ (0, a†). Setting w := (vj(t, a))06j6N (µ) where vj is the null
control defined by Proposition 2 (with µ(a) replaced by (µ(a)+�j)), it follows that
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there exists uµ(t, a) 2 L
2(!) such that Guµ(t, a) = w, i.e.

Z

!
uµ(t, a, x)'j(x) dx = vj(t, a) (j 2 [|0,N (µ)|], (t, a) 2 (0, T )⇥ (0, a†) a.e.),

(26)
with

kuµ(t, a, ·)kL2(!) 6 Ce
C
p
µ
kwkRN(µ)+1 . (27)

From the above inequality 26, it follows that

kuµk
2
L1((0,T );X) 6 Ce

C
p
µ

N (µ)X

j=0

kvjk
2
L1((0,T );L2(0,a†))

, (28)

where kvjk
2
L1((0,T );L2(0,a†))

6 C
T 2 kp

j
0k

2
L2(0,a†)

by Proposition 2, so that from the
above inequality we have

kuµk
2
L1((0,T );X) 6

Ce
C
p
µ

T 2
(N (µ) + 1)kp0k

2
X .

By Weyl’s formula (see, for instance, Netrusov and Safarov [18] for a reminder),
there exists a constant K > 0 such that N (µ) 6 Kµ

n
2 , so that from the above

formula we have

kuµkL1((0,T );X) 6
Ce

C
p
µ

T
kp0kX ,

for some constant C > 0.

4. Proof of the main result. In this section we prove Theorem 1.1 by applying
a version of the Lebeau-Robbiano strategy, initially proposed for the heat equation.
A distinctive feature of the version of this methodology we propose here is that
the projected systems are infinite dimensional, being described by equations similar
to the Lotka-McKendrick system without spatial di↵usion. To apply this strategy,
we need these systems to be null controllable in arbitrarily small time so that our
method is limited to the case of a control which is active for all ages.

Recall from Proposition 3 that, given a time T > 0 and a frequency µ > 0, there
exists uµ 2 L

1((0, T );X) such that the solution p of 1 belongs to the orthogonal
of Eµ at time T , for every a 2 (0, a†). The control cost behaves like e

C
p
µ, and can

be compensated by the natural dissipation of the solution stated in the following
proposition.

Proposition 4. Let µ > 0. Suppose that ⇧Eµp0(a, ·) = 0 for almost every a 2

(0, a†). Then there exists a constant M > 0 such that for every t > 0, the solution

p of 1 with u ⌘ 0 satisfies

kp(t, ·, ·)kX 6 Me
�µt

kp0kX (t > 0).

Proof. Suppose that ⇧Eµp0(a) = 0 for almost every a 2 (0, a†). With u ⌘ 0, the
solution p of 1 satisfies

p(t, a, ·) =
X

j: �j>µ

p
j(t, a)'j in L

2(⌦), a.e. in (0, ⌧)⇥ (0, a†),
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where
8
>>><

>>>:

@tp
j(t, a) + @ap

j(t, a) + (µ(a) + �j)p
j(t, a) = 0 t > 0, a 2 (0, a†),

p
j(t, 0) =

Z a†

0
�(a)pj(t, a) da, t > 0,

p
j(0, a) = p

j
0(a), a 2 (0, a†).

(29)

Let �j > µ. It is easy to check that the solution p
j of 29 satisfies pj(t, a) =

e
�t�jTA0

t (pj0)(a), so that using 17 we have

kp
j(t, ·)kL2(0,a†) 6 Me

��jtkp
j
0kL2(0,a†)

6 Me
�µt

kp
j
0kL2(0,a†),

(30)

since �j > µ. Using

kp(t, a, ·)k2L2(⌦) =
X

j: �j>µ

|p
j(t, a)|2,

it follows that we have

kp(t, ·, ·)k2L2((0,a†)⇥⌦) =
X

j: �j>µ

kp
j(t, ·)k2L2(0,a†)

6 M
2
e
�2µt

X

j: �j>µ

kp
j
0k

2
L2(0,a†)

6 M
2
e
�2µt

kp0k
2
X ,

(31)

so that the estimation of Proposition 4 holds.

The following corollary is the key point of the strategy of Lebeau and Robbiano,
originally developed for the null controllability of the heat equation [16]. Given a
time T > 0, we construct a control in two steps in the time interval (0, T ): we
control the first frequencies in the time interval (0, T/2) with the cost obtained in
Proposition 3, and we let the system to evolve freely in the time interval (T/2, T )
in order to dissipate the energy possibly transferred to the high frequencies (see
Proposition 4).

Given Proposition 3 and Proposition 4, the following Corollary 1 and the proof
of Theorem 1.1 can be obtained as a consequence of Theorem 2.1 from [8]. For the
sake of completeness, we provide detailed proofs.

Corollary 1. For every µ > 0 and every T 2 (0, ⌧), there exists uµ 2 L
1((0, T );X)

such that

kuµkL1((0,T );X) 6
Ce

C
p
µ

T
kp0kX ,

and

kp(T, ·, ·)kX 6 Ce
C
p
µ�Tµ

2 kp0kX , (32)

where p is the solution of 1 with control function uµ.

Proof. Let T 2 (0, ⌧). We first use Proposition 3 on the time interval (0, T/2). This
gives us a control function vµ 2 L

1((0, T/2);X) such that the solution p of 1 with
control function vµ satisfies

⇧Eµp(T/2, a) = 0 (a 2 (0, a†) a.e.), (33)

and

kvµkL1((0,T/2);X) 6
Ce

C
p
µ

T
kp0kX . (34)
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In the second half interval (T/2, T ), we choose a null control in order to take advan-
tage of the natural dissipation given by Proposition 4. More precisely, for almost
every t 2 (0, T ), we set

uµ(t) =

(
vµ(t) if t 2 (0, T/2),

0 if t 2 (T/2, T ).
(35)

Thanks to 34 and 35, it is clear that we have

kuµkL1((0,T );X) 6
Ce

C
p
µ

T
kp0kX , (36)

and since uµ = 0 on the time interval (T/2, T ), formula 13 gives

p(T ) = TA
T/2p(T/2), (37)

so that using Proposition 4 together with 33 and 37, it follows that we have

kp(T, ·, ·)kX 6 Me
�Tµ

2 kp(T/2, ·, ·)kX . (38)

Moreover, it follows from formula 13 and 35 that we have

p(T/2) = TA
T/2p0 +

Z T/2

0
TA
T/2��Bvµ(�) d�,

and it follows from the assumption 17 and Cauchy-Schwarz inequality that we have

kp(T/2, ·, ·)kX 6 Mkp0kX +M

p
T/2kvµkL2((0,T/2);X)

6 Mkp0kX +
M

2
TkvµkL1((0,T/2);X)

(39)

so that using 34, 38 and 39 we have

kp(T, ·, ·)kX 6 Ce
C
p
µ�Tµ

2 kp0kX , (40)

for some constant C > 0.

We then use a time-splitting procedure, as described in [16], to get the null
controllability of system 1.

Proof of theorem 1.1. Let ⌧ > 0. Consider the sequences

Tj =
⌧

2j
and µj = �(2j)2 (j > 1),

where � > 0 is determined later. Denote by ⌧0 = 0 and ⌧j =
jX

k=1

Tk, for every

j > 1, so that we have (0, ⌧) =
[

j>0

(⌧j , ⌧j+1). Following the strategy of Lebeau and

Robbiano [16], we will define a control by induction on each interval (⌧j , ⌧j+1) which
drives the initial state to zero in time ⌧ .

Firstly, during the time interval (0, ⌧1) = (0, T1), we apply a control u1 as given
by Corollary 1 with µ = µ1, so that we have

ku1kL1((0,⌧1);X) 6
Ce

C
p
µ1

T1
kp0kX ,

and

kp(⌧1, ·, ·)kX 6 Ce
C
p
µ1�T1µ1

2 kp0kX .
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Given j > 1, during the time interval (⌧j�1, ⌧j), we apply by induction a control
function denoted by uj as given by Corollary 1 with µ = µj so that we have

kujkL1((⌧j�1,⌧j);X) 6
Ce

C
p
µj

Tj
kp(⌧j�1, ·, ·)kX , (41)

and

kp(⌧j , ·, ·)kX 6 Ce
C
p
µj�

Tjµj
2 kp(⌧j�1, ·, ·)kX . (42)

From 42, it follows that for every j > 1 we have

kp(Tj , ·, ·)kX 6 C
j
e
C

Pj
k=1

p
µk� 1

2

Pj
k=1 Tkµkkp0kX , (43)

with

C

jX

k=1

p
µk �

1

2

jX

k=1

Tkµk = 2(2j � 1)(C
p

� �
�

2
⌧), (44)

by construction of the sequences (Tj)j>1 and (µj)j>1. Then we choose � > 0 large
enough so that

�̃ :=
�

2
⌧ � C

p
� > 0, (45)

so that from 43, 44 and 45 we have

kp(⌧j , ·, ·)kX 6 KC
j
e
��̃2j+1

kp0kX , (46)

for some constant K > 0.
Going back to 41 and using the estimate given by 46, it follows that we have

kujkL1((⌧j�1,⌧j);X) 6
KC

⌧
e
C
p
�2j2�j

C
j�1

e
�2�̃(2j�1�1)

kp0kX

=
K̃

⌧
C

j2�j
e
2j(C

p
���̃)

kp0kX ,

(47)

with K̃ = Ke
2�̃ . We choose � > 0 large enough such that

�̄ := �̃ � C

p
� =

�

2
⌧ � 2C

p
� > 0, (48)

so that from 47 and 48 we have

kujkL1((⌧j�1,⌧j);X) 6
K̃

⌧
C

j2�j
e
��̄2j

kp0kX . (49)

The above estimate 49 ensures that

sup
j>1

kujkL1((⌧j�1,⌧j);X) < +1, (50)

so that defining the control u by

u =
+1X

j=1

uj (⌧j�1,⌧j) (51)

gives a control function in L
1((0, ⌧);X). The corresponding trajectory p is contin-

uous in time with values in X and satisfies

kp(⌧j , ·, ·)kX �!
j!1

0, (52)

thanks to estimation 46. This implies that p(⌧, ·, ·) = 0, since ⌧j ! ⌧ as j !

+1.
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Remark 2. Given ⌧ > 0, in the above proof, we can choose � = 2( 4C⌧ )2 so that

the condition 48 : �̄ := �
2 ⌧ � 2C

p
� > 0 is fulfilled (in this case, we have �̄ =

4c2

⌧ (4� 2
p
2)). With this choise of �, it follows from 49 that the control u defined

by 51 satisfies

kukL1((0,⌧);X) 6 Ke
K
⌧ kp0kX , (53)

for some constant K > 0. The same type of estimation is shown by Seidman [19]
for the null controllability of the heat equation, using also an adaptated Lebeau-
Robbiano strategy.
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