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Abstract
We consider an infinite dimensional nonlinear controlled system describing age-
structured population dynamics, where the birth and the mortality rates are nonlinear
functions of the population size. The control being active on some age range, we give
sharp conditions subject to the age range and the control time horizon to get the null
controllability of the nonlinear controlled population dynamics. The main novelty is
that we use here as amain ingredient the comparison principle for age-structured popu-
lation dynamics, and in case of null controllabilitywe provide a feedback controlwith a
very simple structure,while preserving the nonnegativity of the state trajectory. Finally,
we establish the lack of the null controllability for the linear Lotka-McKendrick equa-
tion with spatial diffusion when the control acts in a subset of the habitat and we want
to preserve the positivity of the state trajectory.

Keywords Population dynamics · Null controllability · Feedback controls ·
Nonlinearities · Nonnegativity

1 Introduction

We shall continue and extend the investigation in Hegoburu et al. [8] concerning the
null controllability of the age-dependent population dynamics. More precisely, let
p(t, a) be the distribution of individuals of age a at time t of a biological population.
Let a† be the maximal age of an individual and τ be a positive constant. Consider
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sanita@uaic.ro

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux/Bordeaux INP/CNRS, 351
Cours de la Libération, 33 405 Talence, France

2 Faculty of Mathematics, “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania
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that the population dynamics is described by the following nonlinear system, firstly
proposed (without control) by Gurtin and MacCamy [7]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ p
∂t (t, a) + ∂ p

∂a (t, a) + μ(t, a, P(t))p(t, a) = χ[a1,a2](a)u(t, a), (t, a) ∈ Qτ

p(t, 0) =
∫ a†

0
β(t, a, P(t))p(t, a) da, t ∈ (0, τ )

p(0, a) = p0(a), a ∈ (0, a†)

P(t) =
∫ a†

0
p(t, a) da, t ∈ (0, τ ),

(1)

where u is a control function, χ[a1,a2] is the characteristic function of the interval
[a1, a2] (where 0 � a1 < a2 � a†), p0 is the initial population density and Qτ =
(0, τ ) × (0, a†). β and μ are the fertility rate and the mortality rate, respectively. In
the following, the nonlocal boundary condition

p(t, 0) =
∫ a†

0
β(t, a, P(t))p(t, a) da, t ∈ (0, τ ),

will be referred as the renewal law.
To state our main results, we first recall the standard assumptions, used for instance

in Aniţa [5, p. 30], on the functions μ, β, p0 and u:

(H1) for every s � 0, the functions β(·, ·, s) and μ(·, ·, s) belong to L∞(Qτ ) and
L1
loc([0, τ ] × [0, a†)) respectively,

(H2) the functions β and μ are locally Lipschitz functions with respect to the third
variable, i.e., for any M > 0, there exists L(M) > 0 such that for almost every
(t, a) ∈ Qτ and for every s1, s2 ∈ [0, M], we have

|β(t, a, s1) − β(t, a, s2)| � L(M) · |s1 − s2|,
|μ(t, a, s1) − μ(t, a, s2)| � L(M) · |s1 − s2|,

(H3) for almost every (t, a, s) ∈ Qτ × (0,+∞), we have

β(t, a, s) � 0 and μ(t, a, s) � 0,

(H4) for almost every (t, a) ∈ Qτ , the function β(t, a, ·) is nonincreasing,
(H5) for almost every (t, a) ∈ Qτ , the function μ(t, a, ·) is nondecreasing,
(H6) p0 ∈ L2(0, a†), p0(a) � 0 a.e. a ∈ (0, a†),
(H7) the control function u belongs to L2(Qτ ).

By a solution to (1), we mean a function p ∈ L∞(0, τ ; L2(0, a†)), absolutely
continuous along almost every characteristic line of equation t − a = c [with c ∈
(−a†, τ )], which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

Dp(t, a) + μ(t, a, P(t))p(t, a) = χ[a1,a2](a)u(t, a) a.e. (t, a) ∈ Qτ

lim
ε→0+ p(t + ε, ε) =

∫ a†

0
β(t, a, P(t))p(t, a)da a.e. t ∈ (0, τ )

lim
ε→0+ p(ε, a + ε) = p0(a) a.e. a ∈ (0, a†),
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where P(t) = ∫ a†
0 p(t, a) da for almost every t ∈ (0, τ ). Here

Dp(t, a) = lim
ε→0

p(t + ε, a + ε) − p(t, a)

ε

is the directional derivative of p at (t, a) for direction (1, 1). The definition of the
solution implies that there is a trace of p on any curve of equation t = c, with
c ∈ [0, τ ]. With the above assumptions, system (1) has at most one nonnegative
solution, and if in addition u(t, a) ≥ 0 a.e. (t, a) ∈ Qτ , the existence and uniqueness
of a nonnegative solution to (1) can be proved via the Banach fixed point theorem (see,
for instance, [5, Chapter 2]).

Notice that actually the control acts only for a ∈ [a1, a2].
For almost every (t, a) ∈ Qτ , denote by β+(t, a) := β(t, a, 0) so that, due to

assumption (H4), for almost every (t, a, s) ∈ Qτ × (0,+∞) we have

β(t, a, s) � β(t, a, 0) = β+(t, a) a.e. (t, a, s) ∈ Qτ × (0,+∞). (2)

Our first result asserts that, assuming that the age of individuals able to reproduce
is bounded away from zero, given a1 small enough and τ large enough, we are able
to bring the solution p of (1) to zero by means of a control function u ∈ L2(Qτ ),
preserving the nonnegativity of the state trajectory. More precisely, we have

Theorem 1 With the above notations and assumptions, suppose that there exists ab ∈
(0, a†) such that for almost every t ∈ (0, τ ), we have

β+(t, a) = 0 a.e. a ∈ (0, ab), (3)

where the function β+ is defined in (2).
Assume that we have a1 < ab. If τ > a† − a2 + a1, then for every p0 ∈ L2(0, a†)

with p0(a) � 0 a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding unique
nonnegative solution p of (1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

The following Theorem 2 states that the previous result is sharp, in the sense that if
a1 (respectively τ ) is bigger than ab (respectively smaller than a†−a2+a1), the system
(1) may not be null controllable by means of controls u ∈ L2(Qτ ) while preserving
the nonnegativity of the controlled state trajectory. More precisely, we have

Theorem 2 With the above notations and assumptions,

(i) Assume that there exists ab ∈ (0, a†) and am ∈ (0, a†] with ab < am such that,
for almost every t ∈ (0, τ ) we have

β(t, a, s) > 0 a.e. (a, s) ∈ (ab, am) × (0,+∞).
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If a1 > ab, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) � 0
a.e. a ∈ (0, a†) such that there is no control u and a corresponding nonnegative
solution p to (1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) If τ < a† − a2 + a1, there exists a function β satisfying (H1)–(H4) and an initial
population density p0 ∈ L2(0, a†)with p0(a) � 0 a.e. a ∈ (0, a†) such that there
is no control u and a corresponding nonnegative solution p to (1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Our third result asserts that condition (3) is not necessary to get the null controlla-
bility of system (1), provided that we are able to control the very young individuals.
More precisely, provided that a1 = 0 and a2 > 0, for any function β satisfying (H1)–
(H4), we are able to bring the solution p of (1) to zero in sufficiently large time τ by
means of a control u ∈ L2(Qτ ), preserving the nonnegativity of the state trajectory:

Theorem 3 With the above notations and assumptions,

(i) Assume that a1 = 0 anda2 > 0. If τ > a†−a2, then for every p0 ∈ L2(0, a†)with
p0(a) � 0 a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a unique nonnegative
solution p of (1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) Assume that there exists am ∈ (0, a†] such that, for almost every t ∈ (0, τ ) we
have

β(t, a, s) > 0 a.e. (a, s) ∈ (0, am) × (0,+∞).

If a1 > 0, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) � 0
a.e. a ∈ (0, a†) such that there is no control u and a corresponding nonnegative
solution p to (1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(iii) If τ < a† − a2, there exists an initial population density p0 ∈ L2(0, a†) with
p0(a) � 0 a.e. a ∈ (0, a†) such that there is no control u and a corresponding
nonnegative solution p to (1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

For an overview on age-structured population dynamics models, we refer, for
instance, to Webb [19], Iannelli [10], Kunisch et al. [13] and the references therein.

In the case where both functions β and μ depend only on the age variable, some
null controllability results of the age-dependent population dynamics model (without
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diffusion)were first obtained byBarbu et al. [6]. Assuming that the control is supported
in the age interval (0, a0), for some a0 < a†, the authors proved that the controlled
population may be steered to any steady state of (1), except for a small interval of ages
near zero. Recently, Hegoburu et al. [8] proved that this restriction is not necessary,
provided individuals do not reproduce at the age close to zero. They also proved there
exists controls which preserves the nonnegativity of the state trajectory.More recently,
Maity [14] proved that null controllability can be achieved by controls supported in
any subinterval [a1, a2] of [0, a†], provided we control before the individuals start
to reproduce. In this case, the author proved that the system is null controllable in
sufficiently large time, i.e., when τ > a1+max{a1, a†−a2} bymeans of observability
inequalities.

The null controllability of systems modeling nonlinear age-structured population
dynamics has been studied by Ainseba et al. [3], in the case when a1 = 0 and a2 ∈
(0, a†), using as a main ingredient the Kakutani fixed point theorem. In [3], the main
result asserts controllability of the system (1) to zero in time τ > a† by a distributed
control, except for a small interval of ages near zero. In our present paper, we get an
exact null controllability result for the system (1). Moreover, the minimal time needed
to steer the population to zero (i.e., τ > a†−a2+a1) seems to be sharp. Instead of using
observability results, we use here as a main ingredient the comparison principle for
linear age-structured population dynamics. In case of null controllability, we provide
a feedback control with a very simple structure and such that (1) admits a unique
nonnegative solution p satisfying p(τ, a) = 0 a.e. a ∈ (0, a†).

As already mentioned, in the present work we use comparison results for age-
structured population dynamics and some feedback controls with a simple structure
(as a harvesting term) in order to prove some null controllability results. Actually,
the use of such harvesting term in order to get the null controllability in an abstract
space is presented in Sect. 2. Sections 3, 4 and 5 are devoted to prove, respectively,
Theorems 1, 2 and 3, firstly in the case where the functions β and μ do not depend on
the third variable (namely, in the linear setting) and to deduce the results of the above-
mentioned Theorems in the more general nonlinear setting by using the results of the
linear case and the comparison principle for age-structured population dynamics. In
Sect. 6, we give an application to the results obtained in the linear case: We show how
to steer a population to another one in the linear setting, preserving the nonnegativity
of the population. In Sect. 7, we show how the comparison principle for age-structured
population dynamics may be used to prove the lack of the null controllability for the
linear Lotka-McKendrick equation with spatial diffusion when the control acts in a
subset of the habitat.

2 A null-controllability result in an abstract space

Consider the following controlled system:

{
y′(t) − Ay(t) = u(t), t ∈ (0, τ )

y(0) = y0,
(4)
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where A is the generator of a C0-semigroup (et A)t≥0 of linear and bounded operators
in the real Banach space X and τ is a positive constant. We remind that by a mild
solution to (4), we mean the function y ∈ C([0, τ ]; X) given by

y(t) = et A y0 +
∫ t

0
e(t−s)Au(s) ds, for every t ∈ [0, τ ].

If y0 ∈ X and u ∈ L2(0, τ ; X), then (4) has a unique mild solution.
The controllability properties of (4) have been investigated by Tucsnak and Weiss

[18] via the observability. Here we use a different approach in order to get the null-
controllability: we use a feedback control. Actually, if

u(t) := − 1

τ − t
y(t), t ∈ (0, τ ), (5)

then (4) becomes

⎧
⎨

⎩

y′(t) − Ay(t) = − 1

τ − t
y(t), t ∈ (0, τ )

y(0) = y0,
(6)

and by a mild solution to (6) we mean a function y ∈ C([0, τ ]; X) such that

y(t) = et A y0 −
∫ t

0
e(t−s)A

(
1

τ − s
y(s)

)

ds, for every t ∈ [0, τ ].

By Gronwall–Bellman’s inequality, we may conclude that there exists at most one
mild solution to (6). Let us prove that actually, the function y defined by

y(t) := τ − t

τ
et A y0 t ∈ [0, τ ], (7)

is a mild solution to (6) and that u given by (5) belongs to L2(0, τ ; X).
Indeed, y given by (7) belongs to C([0, τ ]; X) and for any t ∈ [0, τ ] we have

et A y0 −
∫ t

0

1

τ − s
e(t−s)Ay(s) ds

= et A y0 − 1

τ

∫ t

0

1

τ − s
(τ − s)e(t−s)AesA y0 ds

= et A y0 − t

τ
et A y0 = τ − t

τ
et A y0 = y(t).

On the other hand, the control u given by (5) satisfies

u(t) = − 1

τ − t
y(t) = −1

τ
et A y0, t ∈ [0, τ ],
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which indeed belongs to C([0, τ ]; X) and consequently to L2(0, τ ; X).
Notice that, assuming that the functions β and μ depend only on the age variable,

the formulation of Eq. (1) may be considered using semigroup theory. Indeed, denote
by X = L2(0, a†) and consider the operator A : D(A) → X defined by

D(A) =
{

ϕ ∈ L2(0, a†); ϕ(0) =
∫ a†

0
β(a)ϕ(a) da, −dϕ

da
− μϕ ∈ L2(0, a†)

}

,

Aϕ = −dϕ

da
− μϕ, ϕ ∈ D(A).

It is well known (see, for instance, Song et al. [16] or Kappel and Zhang [11]) that A
generates a C0-semigroup of linear and bounded operators in X which we denote by
(et A)t�0. If the control function u in (1) acts in the whole age range (0, a†) (i.e., if
a1 = 0 and a2 = a†) and is defined by the feedback form

u(t) := − 1

τ − t
p(t), t ∈ [0, τ ], (8)

where p is the corresponding solution to (1), we deduce that p satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ p
∂t (t, a) + ∂ p

∂a (t, a) +
(
μ(a) + 1

τ−t

)
p(t, a) = 0, (t, a) ∈ Qτ

p(t, 0) =
∫ a†

0
β(a)p(t, a) da, t ∈ (0, τ )

p(0, a) = p0(a), a ∈ (0, a†),

(9)

and so that for every t ∈ [0, τ ] we get from (7) that p(t) = τ−t
τ
et A p0 in X for any

t ∈ [0, τ ], and p(τ ) = 0 in X . It can be seen in (9) that, u given in such a feedback form
(8), it behaves like an additional mortality (as a harvesting rate) for the age-structured
population dynamics. In Sects. 3 and 5, we shall develop this idea in the more general
case when the functions β andμ depend on both time and age variable, and the control
u acts in a subinterval of [0, a†].

3 A positive null controllability result when the young individuals do
not reproduce

This section is devoted to prove Theorem 1, firstly in the case where the functions β

and μ do not depend on the third variable (see Proposition 1). The proof of Theorem
1 in the more general nonlinear case will be deduced from the result of Proposition 1
and the comparison principle for age-structured population dynamics.
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More precisely, we first assume that the population dynamics is described by the
following linear system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ p
∂t (t, a) + ∂ p

∂a (t, a) + μ0(t, a)p(t, a) = χ[a1,a2](a)u(t, a), (t, a) ∈ Qτ

p(t, 0) =
∫ a†

0
β0(t, a)p(t, a) da, t ∈ (0, τ )

p(0, a) = p0(a), a ∈ (0, a†),

(10)

where τ is a positive constant and Qτ = (0, τ )×(0, a†). For the sake of completeness,
let us recall the classical assumptions on the functions μ0, β0, p0 and u relatively to
the linear case:

(L1) the functionsβ0 andμ0 belong to L∞(Qτ ) and L1
loc([0, τ ]×[0, a†)) respectively,

(L2) for almost every (t, a) ∈ Qτ , we have

β0(t, a) � 0 and μ0(t, a) � 0,

(L3) p0 ∈ L2(0, a†), p0(a) � 0 a.e. a ∈ (0, a†),
(L4) the control function u belongs to L2(Qτ ).

Note that, using the definition of a solution to (10), we can obtain, using an integra-
tion along the characteristic lines (see, for instance, [5, p. 16]) that for almost every
(t, a) ∈ Qτ with a � t , we have that the solution p to (10) satisfies

p(t, a) = exp

{

−
∫ t

0
μ0(s, a − t + s) ds

}

p0(a − t)

+
∫ t

0
exp

{

−
∫ t

s
μ0(σ, a − t + σ) dσ

}

χ[a1,a2](a − t + s)u(s, a − t + s) ds,

(11)

and for almost every (t, a) ∈ Qτ with t > a, we have

p(t, a) = exp

{

−
∫ a

0
μ0(t − a + s, s) ds

}

B(t − a)

+
∫ a

0
exp

{

−
∫ a

s
μ0(t − a + σ, σ ) dσ

}

χ[a1,a2](s)u(t − a + s, s) ds,

where

B(t) =
∫ a†

0
β0(t, a)p(t, a) da a.e. t ∈ (0, τ ).

Notice that, as a consequence of the Banach fixed point theorem, we get that B ∈
L∞(0, τ ) (see, for instance, [5]).

In the following, we shall make several uses of the comparison principle for
age-structured population dynamics (see [5, Theorem 2.1.2]) which we recall in the
following Theorem 4.
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Theorem 4 With the above notations and assumptions, assume that τ > 0. Let p be
the solution of (10). We get

(i) if u(t, a) � 0 a.e. in Qτ , then p(t, a) � 0 a.e. in Qτ ;
(ii) if β0i , μ0i , p0i , ui satisfy (L1)–(L4) (i = 1, 2) and

β01(t, a) � β02(t, a), μ01(t, a) � μ02(t, a) a.e. in Qτ ,

p01(a) � p02(a), a.e. in (0, a†),

u1(t, a) � u2(t, a), a.e. in Qτ ,

then p1(t, a) � p2(t, a) a.e. in Qτ , where pi is the solution of (10), correspond-
ing to β0 := β0i , μ0 := μ0i , p0 := p0i , u := ui , i ∈ 1, 2.

In this section, we will first prove the following Proposition 1 which is, roughly
speaking, the “linear version” of Theorem 1.

Proposition 1 With the above notations and assumptions, suppose that there exists
ab ∈ (0, a†) such that for almost every t ∈ (0, τ ), we have

β0(t, a) = 0 a.e. a ∈ (0, ab). (12)

Assume that we have a1 < ab. If τ > a† − a2 + a1, then for every p0 ∈ L2(0, a†)
with p0(a) � 0 a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding unique
nonnegative solution p of (10) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

In this whole section, we suppose that there exists ab > 0 such that (12) is satisfied,
with a1 < ab and τ > a† − a2 + a1.

We may divide the proof of Proposition 1 in two cases, since the shapes of the
controls functions driving the initial population to zero in time τ may be slightly
different in the two following cases, depending on the order relationship of a2 and ab:

Case 1: τ > a† − a2 + a1 and a1 < a2 � ab,

Case 2: τ > a† − a2 + a1 and a1 < ab < a2.

The two following subsections are devoted to prove Proposition 1 in the two above-
mentioned cases.

3.1 The first case: � > a† − a2 + a1 and a1 < a2 � ab

This subsection is devoted to prove Proposition 1, in the case where τ > a† − a2 + a1
and a1 < a2 � ab.

Proof of Proposition 1with a2 � ab Suppose that τ > a†−a2+a1 and a1 < a2 � ab.
Without loss of generality, we may assume that τ < a†. Let us prove that there exists
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a feedback control u and a corresponding unique nonnegative solution p of (10) such
that

p(τ, a) = 0 a.e. a ∈ (0, a†).

Denote by ε := 1
2 (τ −(a†−a2+a1)). For almost every (t, a) ∈ Qτ , let us consider

the feedback control u(t, a) := −v(t, a)p(t, a), where v is a control itself and acts as
a harvesting rate, and is given by

v(t, a) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

a2 − a
if

{
ε − a2 � t − a < τ − a2,

a ∈ [a1, a2],
1

τ − t
if

{
τ − a2 � t − a � τ − (a1 + ε),

a ∈ [a1, a2],
0 otherwise.

(13)

The structure of v is given in Fig. 1. The solution to (10) with u = −vp exists is unique
and nonnegative (see Aniţa [5]), and via the comparison principle for age-dependent
population dynamics [see Theorem 4 (ii)] we get that

0 � p(t, a) � p̃(t, a) a.e. (t, a) ∈ Qτ , (14)

Fig. 1 The structure of the control v when τ > a† − a2 + a1 and a1 < a2 � ab
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where p̃ is the solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + v(t, a) p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) =
∫ a†

ab
β0(t, a) p̃(t, a) da, t ∈ (0, τ )

p̃(0, a) = p0(a), a ∈ (0, a†).

(15)

Integrating along the characteristic lines, we get that the solution p̃ of (15) is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(a − t) exp

(

−
∫ a

a−t

ds

a2 − s

)

if

{
ε − a2 � t − a � −a1,

a ∈ [a1, a2],
p0(a − t) exp

(

−
∫ a

a1

ds

a2 − s

)

if

{
− a1 � t − a � 0,

a ∈ [a1, a2],
p̃(t − a, 0) exp

(

−
∫ a

a1

ds

a2 − s

)

if

{
0 < t − a < τ − a2,

a ∈ [a1, a2],
p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − s

)

if

{
τ − a2 � t − a � τ − (a1 + ε),

a ∈ [a1, a2],

so that we have

p̃(t, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 − a

a2 − (a − t)
p0(a − t) if

{
ε − a2 � t − a � −a1,

a ∈ [a1, a2],
a2 − a

a2 − a1
p0(a − t) if

{
− a1 � t − a � 0,

a ∈ [a1, a2],
a2 − a

a2 − a1
p̃(t − a, 0) if

{
0 < t − a < τ − a2,

a ∈ [a1, a2],
τ − t

τ − (t − a + a1)
p̃(t − a, 0) if

{
τ − a2 � t − a � τ − (a1 + ε),

a ∈ [a1, a2].

(16)

We may conclude from the above formula that we have

{
p̃(t, a2) = 0 if t ∈ (ε, τ ),

p̃(τ, a) = 0 if a ∈ (a1 + ε, a2).
(17)

Integrating on the characteristic lines the equation satisfied by p̃, we get from (17)
that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ] × [a2, a†]. (18)

Since ab � a2, we obviously get from the above equation that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ] × [ab, a†].
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Since p̃ satisfies the renewal law, we may infer that

p̃(t, 0) = 0 if t ∈ [τ − (a1 + ε), τ ],

and integrating along the characteristic lines we get that

p̃(τ, a) = 0 if a ∈ [0, a1 + ε]. (19)

By (17), (18) and (19), we may conclude that

p̃(τ, a) = 0 a.e. a ∈ (0, a†).

It remains to prove that the control u = −vp belongs to L2(Qτ ). For almost every
(t, a) ∈ Qτ , from (13) and (16) we have

v(t, a) p̃(t, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(a − t)

a2 − (a − t)
if

{
ε − a2 � t − a � −a1,

a ∈ [a1, a2],
p0(a − t)

a2 − a1
if

{
− a1 � t − a � 0,

a ∈ [a1, a2],
p̃(t − a, 0)

a2 − a1
if

{
0 < t − a < τ − a2,

a ∈ [a1, a2],
p̃(t − a, 0)

τ − (t − a + a1)
if

{
τ − a2 � t − a � τ − (a1 + ε),

a ∈ [a1, a2].
0 otherwise,

and this implies that

|v(t, a) p̃(t, a)| �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p0(a − t)|
ε

if

{
ε − a2 � t − a � −a1,

a ∈ [a1, a2],
|p0(a − t)|
a2 − a1

if

{
− a1 � t − a � 0,

a ∈ [a1, a2],
| p̃(t − a, 0)|

a2 − a1
if

{
0 < t − a < τ − a2,

a ∈ [a1, a2],
| p̃(t − a, 0)|

ε
if

{
τ − a2 � t − a � τ − (a1 + ε),

a ∈ [a1, a2].
0 otherwise.

(20)

Since p̃ ∈ L2(Qτ ), wemay infer from the renewal law thatwe have p̃(·, 0) ∈ L2(0, τ ),
so that from (20) we have v p̃ ∈ L2(Qτ ). Given (14), it follows that we have vp ∈
L2(Qτ ), which concludes the proof of Proposition 1 in the case where a2 � ab. ��
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3.2 The second case: � > a† − a2 + a1 and a1 < ab < a2

This subsection is devoted to prove Proposition 1, in the case where τ > a† − a2 + a1
and a1 < ab < a2.

Proof of Proposition 1with ab < a2 Suppose that τ > a†−a2+a1 and a1 < ab < a2.
Without loss of generality, we may assume that τ < a†. We may also assume, without
loss of generality, that we have ab ∈ (a1, τ ): Indeed, in the case when there exists
ab > 0 satisfying (12) such that ab � τ , we may consider ãb such that ãb ∈ (a1, τ )

and replace ab by ãb, noting that ãb also satisfies (12) since ãb < ab.
For any ε > 0, denote by θ(ε) := τ − (a† − a2 + a1) − ε. Let us introduce ε > 0

small enough such that we have a1 + ε < ab and θ(ε) > 0 (this is possible, since
a1 < ab and τ > a† − a2 + a1).

Let us prove that there exists a feedback control u and a corresponding unique
nonnegative solution p of (10) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

For almost every (t, a) ∈ Qτ , let us consider the feedback control u(t, a) :=
−v(t, a)p(t, a), where

v(t, a) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2 − a
if

{
θ(ε) − a2 � t − a < τ − a1 − a2 − ε,

a ∈ [a1, a2],
1

τ − (a1 + ε) − t
if

{
τ − a1 − a2 − ε � t − a < τ − a1 − ab − ε,

a ∈ [a1, a2],
1

ab − a
if

{
τ − a1 − ab − ε � t − a < τ − ab,

a ∈ [a1, ab],
1

τ − t
if

{
τ − ab � t − a < τ − (a1 + ε),

a ∈ [a1, ab],
0 otherwise.

(21)

The structure of v is given in Fig. 2. The solution to (10) with u = −vp exists,
is unique and nonnegative (see Aniţa [5]), and via the comparison principle for age-
dependent population dynamics [see Theorem 4 (ii)] we get that

0 � p(t, a) � p̃(t, a) a.e. (t, a) ∈ Qτ , (22)

where p̃ is the solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + v(t, a) p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) =
∫ a†

ab
β0(t, a) p̃(t, a) da, t ∈ (0, τ )

p̃(0, a) = p0(a), a ∈ (0, a†).

(23)
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Fig. 2 The structure of the control v when τ > a† − a2 + a1 and a1 < ab < a2

Wemay discuss three subcases, depending on the order relationship of τ −a1−ab−ε,
τ − a1 − a2 − ε and 0 [since the expression of the solution p̃ of (23) may be different
in each subcase]. The first subcase (see below) is shown in Fig. 2.

Subcase 1 Assume that τ − a1 − ab − ε � 0. Integrating along the characteristic
lines, we get that the solution p̃ of (23) satisfies

p̃(t, a) = p0(a − t) exp

(

−
∫ a

max(a−t,a1)

ds

a2 − s

)

if θ(ε) − a2 � t − a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a − t) exp

(

−
∫ t

max(t−a+a1,0)

ds

τ − (a1 + ε) − s

)

if τ − a1 − a2 − ε � t − a < τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a − t) exp

(

−
∫ a

max(a−t,a1)

ds

ab − s

)
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if τ − a1 − ab − ε � t − a � 0, a ∈ [a1, ab],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ a

a1

ds

ab − s

)

if 0 < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − s

)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) = a2 − a

a2 − max(a − t, a1)
p0(a − t)

if θ(ε) − a2 � t − a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = τ − (a1 + ε) − t

τ − (a1 + ε) − max(t − a + a1, 0)
p0(a − t)

if τ − a1 − a2 − ε � t − a < τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = ab − a

ab − max(a − t, a1)
p0(a − t)

if τ − a1 − ab − ε � t − a � 0, a ∈ [a1, ab],

p̃(t, a) = ab − a

ab − a1
p̃(t − a, 0)

if 0 < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = τ − t

τ − (t − a + a1)
p̃(t − a, 0)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab].
Subcase 2 Assume that τ − a1 − a2 − ε � 0 < τ − a1 − ab − ε. Integrating along

the characteristic lines, we get that the solution p̃ of (23) satisfies

p̃(t, a) = p0(a − t) exp

(

−
∫ a

max(a−t,a1)

ds

a2 − s

)

if θ(ε) − a2 � t − a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a − t) exp

(

−
∫ t

max(t−a+a1,0)

ds

τ − (a1 + ε) − s

)
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if τ − a1 − a2 − ε � t − a � 0, a ∈ [a1, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − (a1 + ε) − s

)

if 0 < t − a � τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ a

a1

ds

ab − s

)

if τ − a1 − ab − ε < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − s

)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) = a2 − a

a2 − max(a − t, a1)
p0(a − t)

if θ(ε) − a2 � t − a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = τ − (a1 + ε) − t

τ − (a1 + ε) − max(t − a + a1, 0)
p0(a − t)

if τ − a1 − a2 − ε � t − a � 0, a ∈ [a1, a2],

p̃(t, a) = τ − (a1 + ε) − t

τ − (a1 + ε) − (t − a + a1)
p̃(t − a, 0)

if 0 < t − a � τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = ab − a

ab − a1
p̃(t − a, 0)

if τ − a1 − ab − ε < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = τ − t

τ − (t − a + a1)
p̃(t − a, 0)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab].
Subcase 3 Assume that τ − a1 − a2 − ε > 0. Integrating along the characteristic

lines, we get that the solution p̃ of (23) satisfies

p̃(t, a) = p0(a − t) exp

(

−
∫ a

max(a−t,a1)

ds

a2 − s

)
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if θ(ε) − a2 � t − a � 0, a ∈ [a1, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ a

a1

ds

a2 − s

)

if 0 < t − a � τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − (a1 + ε) − s

)

if τ − a1 − a2 − ε < t − a � τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ a

a1

ds

ab − s

)

if τ − a1 − ab − ε < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a+a1

ds

τ − s

)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) = a2 − a

a2 − max(a − t, a1)
p0(a − t)

if θ(ε) − a2 � t − a � 0, a ∈ [a1, a2],

p̃(t, a) = a2 − a

a2 − a1
p̃(t − a, 0)

if 0 < t − a � τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = τ − (a1 + ε) − t

τ − (a1 + ε) − (t − a + a1)
p̃(t − a, 0)

if τ − a1 − a2 − ε < t − a � τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = ab − a

ab − a1
p̃(t − a, 0)

if τ − a1 − ab − ε < t − a � τ − ab, a ∈ [a1, ab],

p̃(t, a) = τ − t

τ − (t − a + a1)
p̃(t − a, 0)

if τ − ab < t − a � τ − (a1 + ε), a ∈ [a1, ab].

123



2 Page 18 of 38 Mathematics of Control, Signals, and Systems (2019) 31 :2

In the three subcases, we may conclude that we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̃(t, a2) = 0 if t ∈ (θ(ε), τ − (a1 + ε)),

p̃(τ − (a1 + ε), a) = 0 if a ∈ (ab, a2),

p̃(t, ab) = 0 if t ∈ (τ − (a1 + ε), τ ),

p̃(τ, a) = 0 if a ∈ (a1 + ε, ab).

(24)

Integrating on the characteristic lines the equation satisfied by p̃, we get that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ] × [ab, a†]. (25)

Since p̃ satisfies the renewal law, we may infer that

p̃(t, 0) = 0 if t ∈ [τ − (a1 + ε), τ ],

and integrating along the characteristic lines we get that

p̃(τ, a) = 0 if a ∈ [0, a1 + ε]. (26)

By (24), (25) and (26) we get that

p̃(τ, a) = 0 a.e. a ∈ (0, a†).

It remains to prove that, for each subcase, the control u = −vp belongs to L2(Qτ ).
In order to avoid repetitive arguments, we prove that u ∈ L2(Qτ ) only in the first
subcase. In this subcase, for almost every (t, a) ∈ Qτ , from (21) and the corresponding
expression of p̃ we have that v p̃ is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(a−t)
a2−max(a−t,a1)

if

{
θ(ε) − a2 � t − a < τ − a1 − a2 − ε,

a ∈ [a1, a2],
p0(a−t)

τ−(a1+ε)−max(t−a+a1,0)
if

{
τ − a1 − a2 − ε � t − a � τ − a1 − ab − ε,

a ∈ [a1, a2],
p0(a−t)

ab−max(a−t,a1)
if

{
τ − a1 − ab − ε < t − a � 0,

a ∈ [a1, ab],
p̃(t−a,0)
ab−a1

if

{
0 < t − a � τ − ab,

a ∈ [a1, ab],
p̃(t−a,0)

τ−(t−a+a1)
if

{
τ − ab < t − a � τ − (a1 + ε),

a ∈ [a1, ab],
0 otherwise,
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and it follows that we have

|v p̃| �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p0(a−t)|
min(θ(ε),a2−a1)

if

{
θ(ε) − a2 � t − a < τ − a1 − a2 − ε,

a ∈ [a1, a2],
|p0(a−t)|

min(τ−(a1+ε),ab−a1)
if

{
τ − a1 − a2 − ε � t − a � τ − a1 − ab − ε,

a ∈ [a1, a2],
|p0(a−t)|

min(τ−(a1+ε),ab−a1)
if

{
τ − a1 − ab − ε < t − a � 0

a ∈ [a1, ab],
| p̃(t−a,0)|
ab−a1

if

{
0 < t − a � τ − ab,

a ∈ [a1, ab],
| p̃(t−a,0)|

ε
if

{
τ − ab < t − a � τ − (a1 + ε),

a ∈ [a1, ab],
0 otherwise.

Since p̃ ∈ L2(Qτ ), wemay infer from the renewal law thatwe have p̃(·, 0) ∈ L2(0, τ ),
so that we have v p̃ ∈ L2(Qτ ). Given (22), it follows that we have vp ∈ L2(Qτ ), which
concludes the proof of Proposition 1 in the case where a2 > ab. ��

3.3 Proof of Theorem 1: from the linear to the nonlinear case

This subsection is devoted to prove Theorem 1, using the result of Proposition 1 and
the comparison principle for age-structured population dynamics (see Theorem 4).

Proof of Theorem 1 Assume that there exists ab > 0 such that (3) holds. Suppose that
a1 < ab, and let τ > a† − a2 + a1. Suppose, first, that a2 � ab. Denote by v the
function defined by (13). The solution p to (1) with u := −vp exists, is unique, and
via the comparison result for age-dependent population dynamics, we get that

0 � p(t, a) � p(t, a) a.e. (t, a) ∈ Qτ , (27)

where p is solution to the linear system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ p
∂t (t, a) + ∂ p

∂a (t, a)

+(μ(t, a, 0) + v(t, a)χ[a1,a2](a))p(t, a) = 0, (t, a) ∈ Qτ

p(t, 0) =
∫ a†

0
β+(t, a)p(t, a) da, t ∈ (0, τ )

p(0, a) = p0(a), a ∈ (0, a†).

(28)

From the proof of Proposition 1, we get that the solution p of (28) satisfies p(τ, ·) = 0,
with v p ∈ L2(Qτ ), so that using (27) the solution p to (1) with u = −pv satisfies
p(τ, ·) = 0 with u ∈ L2(Qτ ).

The case where ab < a2 is similar, denoting by v the function defined by (21). This
concludes the proof of Theorem 1. ��
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4 Negative null controllability results when the young individuals do
not reproduce

This section is devoted to prove that the results obtained in Theorem 1 are sharp, in the
sense that if we do not control before the individuals start to reproduce or if the control
time horizon τ is too small, then system (1)may not be null controllable. Following the
methodology of the previous Sect. 1, we first prove Theorem 2 in the linear setting (see
Proposition 2) and we shall deduce the results of Theorem 2 from those of Proposition
2 and the comparison principle for age-structured population dynamics (see Theorem
4).

More precisely, let us first consider the linear controlled system (10) subject to
assumptions (L1)–(L4) stated in the beginning of Sect. 3. We first prove the following
Proposition 2 which is the “linear version” of Theorem 2:

Proposition 2 With the above notations and assumptions,

(i) Assume that there exists ab ∈ (0, a†) and am ∈ (0, a†] with ab < am such that,
for almost every t ∈ (0, τ ) we have

β0(t, a) > 0 a.e. a ∈ (ab, am). (29)

If a1 > ab, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) � 0
a.e. a ∈ (0, a†) such that there is no control u and a corresponding nonnegative
solution p to (10) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) If τ < a† − a2 + a1, then there exists a function β0 satisfying (L1)–(L2) and an
initial population density p0 ∈ L2(0, a†)with p0(a) � 0 a.e. a ∈ (0, a†) such that
there is no control u and a corresponding nonnegative solution p to (10) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Proof of Proposition 2(i) Suppose that there exists ab ∈ (0, a†) and am ∈ (0, a†] with
ab < am such that (29) holds. Assume, first, that a1 = ab and let τ > 0. Since a1 > 0,
note that there exists m ∈ N and r ∈ [0, a1) such that τ = ma1 + r . We may suppose,
without loss of generality, that m � 2. Let p0 ∈ L2(0, a†) such that

p0(a) > 0 a.e. a ∈ (0, a1 − r). (30)

Suppose that there exists a control function u ∈ L2(Qτ ) and a corresponding
nonnegative solution p of (10) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).
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Since p(τ, a) = 0 for almost every a ∈ (0, a1), integrating along the characteristic
lines we have that

p(t, 0) = 0 a.e. t ∈ (τ − a1, τ ). (31)

Since p satisfies the renewal law, for almost every t ∈ (τ − a1, τ ) we have that

p(t, 0) =
∫ a†

0
β0(t, a)p(t, a) da �

∫ am

ab
β0(t, a)p(t, a) da. (32)

Since p(t, a) � 0 for almost every (t, a) ∈ Qτ , using (31) and (32) we have, for
almost every t ∈ (τ − a1, τ ),

∫ am

ab
β0(t, a)p(t, a) da = 0. (33)

Using the assumptions on the function β0 and the fact that p(t, a) � 0 for almost
every (t, a) ∈ Qτ , together with the above equality (33) we have that

p(t, a) = 0 a.e. (t, a) ∈ (τ − a1, τ ) × (ab, am).

Integrating along the characteristic lines, we have that

p(t, 0) = 0 a.e. t ∈ (τ − 2a1, τ − a1).

Using and induction argument, we may infer that

p(t, 0) = 0 a.e. t ∈ (τ − (m − 1)a1, τ − ma1).

Recall that τ − ma1 = r . Using again the renewal law, it follows from the above
equality that

p(t, a) = 0 a.e. (t, a) ∈ (τ − (m − 1)a1, r) × (ab, am),

and integrating along the characteristic lines we have that

p(0, a) = 0 a.e. a ∈ (0, a1 − r),

which is a contradiction with (30) (see Fig. 3).
Since it is not possible to bring the population to zero in any time τ in the case

where a1 = ab, we may infer that it is not possible to bring the population to zero in
the case where a1 > ab, so that Proposition 2(i) is proved. ��
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Fig. 3 In this figure, we have τ = 3a1 + r with r ∈ [0, a1). If we suppose that the population vanishes in
time τ , we may deduce that the population vanishes in the whole blue dashed domain, so that the initial
population has to be null in the age interval (0, a1 − r)

Proof of Proposition 2(ii) Let τ < a† − a2 + a1. Suppose that there exists a control
function u ∈ L2(Qτ ) and a corresponding nonnegative solution p of (10) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

We may divide this proof in two cases.

Case 1 Suppose that τ < a† − a2. Then, for almost every (t, a) ∈ Qτ with
a2 � a − t � a† − τ , we have that

∫ t

0
exp

{

−
∫ t

s
μ0(σ, a − t + σ) dσ

}

χ[a1,a2](a − t + s)u(s, a − t + s) ds = 0,

so that from (11), for almost every (t, a) ∈ Qτ with a2 � a − t � a† − τ we have
that

p(t, a) = exp

{

−
∫ t

0
μ0(s, a − t + s) ds

}

p0(a − t),
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and it follows from the above equality that we have that

p(τ, a) = exp

{

−
∫ τ

0
μ0(s, a − τ + s) ds

}

p0(a − τ) a.e. a ∈ (τ + a2, a†),

so that from the above equation the condition p(τ, ·) = 0 cannot be fulfilled in the
case where p0(a) 	= 0 for almost every a ∈ (a2, a† − τ ).

Case 2 Suppose that τ � a† − a2. Since p(τ, a) = 0 for almost every a ∈ (0, a1),
integrating along the characteristic lines we have that

p(t, 0) = 0 a.e. t ∈ (τ − a1, τ ). (34)

Note that, since τ < a† − a2 + a1, we have τ − a1 < a† − a2 so that from (34) and
using the fact that a† − a2 � τ , we have, in particular,

p(t, 0) = 0 a.e. t ∈ (τ − a1, a† − a2).

Since p satisfies the renewal law, for almost every t ∈ (τ − a1, a† − a2) we have that

p(t, 0) =
∫ a†

0
β0(t, a)p(t, a) da = 0. (35)

Sinceβ0(t, a) � 0 and p(t, a) � 0 for almost every (t, a) ∈ (τ−a1, a†−a2)×(0, a†),
we deduce from the above equality (35) that we have

β0(t, a)p(t, a) = 0 a.e. (t, a) ∈ (τ − a1, a† − a2) × (0, a†). (36)

Define the triangle

T := {(t, a) ∈ Qτ , a2 � a − t � a† − (τ − a1), a � τ − a1 + a2, t � τ − a1}.(37)

See Fig. 4 for a picture of the triangle position. From (36) and (37), for almost every
(t, a) ∈ T we have

β0(t, a)p(t, a) = 0. (38)

Moreover, for almost every (t, a) ∈ T we have that

∫ t

0
exp

{

−
∫ t

s
μ0(σ, a − t + σ) dσ

}

χ[a1,a2](a − t + s)u(s, a − t + s) ds = 0,

so that from (11), for almost every (t, a) ∈ T we have that

p(t, a) = exp

{

−
∫ t

0
μ0(s, a − t + s) ds

}

p0(a − t),
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Fig. 4 In this figure, we have τ < a†−a2+a1 and τ � a†−a2. If we suppose that the population vanishes
in time τ , because of the renewal law, we may deduce that the population or the function β has to be null
within the blue dashed triangle T (region which is not influenced by the control). This is not the case in
general : We may choose an initial condition which is strictly positive in the age interval (a2, a†− (τ −a1))
and a strictly positive function β in the blue dashed triangle

and using the above equality, the condition (38) may be rewritten as

β0(t, a) exp

{

−
∫ t

0
μ0(s, a − t + s) ds

}

p0(a − t) = 0 a.e. (t, a) ∈ T .

This condition may not be fulfilled in general: take, for instance, β0(t, a) = 1 for
almost every (t, a) ∈ T and p0(a) > 0 for almost every a ∈ (a2, a† − (τ −a1)). This
concludes the proof of Proposition 2(ii). ��

We now prove Theorem 2 in the more general nonlinear case, using again the
comparison principle and the results of Proposition 2 relatively to the linear setting.

Proof of Theorem 2 (i) Let τ > 0 and a1 > 0. Assume by contradiction that there
exists a control u and a corresponding unique nonnegative solution p of (1) such
that p(τ, a) = 0 a.e. a ∈ (0, a†). We have that P ∈ L∞(0, τ ), where P(t) =∫ a†
0 p(t, a)da. Denote by M = ‖P‖L∞(0,τ ) and by

β−(t, a) := β(t, a, M), μ+(t, a) := μ(t, a, 0), a.e. (t, a) ∈ Qτ .

By the comparison principle for age-structured population dynamics we get that

0 ≤ p̃(t, a) ≤ p(t, a), (t, a) ∈ Q1
τ
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(along almost every characteristic line), where Q1
τ = (0, τ ) × (0, a1), a1 =

min{a1, am}, and p̃ is the solution to the linear system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + μ+(t, a) p̃(t, a) = 0, (t, a) ∈ Q1
τ

p̃(t, 0) =
∫ a1

0
β−(t, a) p̃(t, a) da, t ∈ (0, τ )

p̃(0, a) = p0(a), a ∈ (0, a1).

More precisely, we have used the comparison principle [see Theorem 4(ii)] for the
functions β1, β2, μ1 and μ2 defined on Qτ by

β1(t, a) := β−(t, a), β2(t, a) :=
{

β−(t, a) if (t, a) ∈ Q1
τ ,

0 otherwise,

μ1(t, a) := μ+(t, a), μ2(t, a) := μ(t, a, P(t)),

noting that we have

β1(t, a) � β2(t, a) and μ1(t, a) � μ2(t, a) a.e. in Qτ .

Since β−(t, a) > 0 a.e. (t, a) ∈ (0, τ ) × (ab, a1), we may conclude that for p0
satisfying

p0(a) > 0 a.e. a ∈ (0, a1),

weget that p̃(t, a) > 0 along almost any characteristic line. Sincewehave p̃(τ, a) > 0
a.e. a ∈ (0, a1), we get a contradiction with the fact that p(τ, a) = 0 a.e. a ∈ (0, a1).

��
Proof of Theorem 2(ii) Let us take β := β0, where β0 is chosen as at the end of the
proof of Proposition 2(ii), then arguing again by contradiction and using the com-
parison principle for age-structured population dynamics we get the conclusion as in
Theorem 2(i). ��

5 Controllability results with general assumptions on the fertility rate

This section is devoted to prove Theorem 3, when no extra assumption on the function
β is assumed (in particular, we may have β > 0 in some interval of ages near zero). To
this aim, we follow the methodology of the two previous sections and we first prove
Theorem 3 in the linear setting. The results of Theorem 3 will be deduced from those
of Proposition 3 and by the comparison principle.

Let us first consider the linear controlled system (10) subject to assumptions (L1)–
(L4) stated in Sect. 3. We will prove the following Proposition 3 which is the “linear
version” of Theorem 3:

Proposition 3 With the above notations and assumptions,

(i) Assume that a1 = 0 and a2 > 0. If τ > a† − a2, then for every p0 ∈ L2(0, a†)
with p0(a) � 0 a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding
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unique nonnegative solution p of (10) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) Assume that there exists am ∈ (0, a†] such that, for almost every t ∈ (0, τ ) we
have

β0(t, a) > 0 a.e. a ∈ (0, am).

If a1 > 0, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) � 0
a.e. a ∈ (0, a†) such that there is no control u and a corresponding nonnegative
solution p to (10) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(iii) If τ < a† − a2, there exists an initial population density p0 ∈ L2(0, a†) with
p0(a) � 0 a.e. a ∈ (0, a†) such that there is no control u and a corresponding
nonnegative solution p to (10) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Proof of Proposition 3(i) Suppose that τ > a† − a2. Without loss of generality, we
may assume that τ < a†. Let us prove that there exists a feedback control u and a
corresponding unique nonnegative solution p of (10) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

Denote by ε := 1
2 (τ − (a† − a2)). For almost every (t, a) ∈ Qτ , let us consider

the feedback control u(t, a) := −v(t, a)p(t, a), where

v(t, a) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2 − a
if

{
ε − a2 � t − a < a† − 2a2 + ε,

a ∈ [0, a2],
1

a† − a2 + ε − t
if

{
a† − 2a2 + ε � t − a < a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if

⎧
⎪⎨

⎪⎩

a† − 2a2 + 2ε � t − a < a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],
a ∈ [0, a2 − ε],

1

τ − t
if

{
a† − a2 + ε � t � τ,

a ∈ [0, a2],
0 otherwise.

(39)

The structure of v is given in Fig. 5. The solution to (10) with u = −vp exists,
is unique and nonnegative (see Aniţa [5]), and via the comparison principle for age-
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Fig. 5 The structure of the control v when a1 = 0 and τ > a† − a2

dependent population dynamics [see Theorem 4(ii)] we get that

0 � p(t, a) � p̃(t, a) a.e. (t, a) ∈ Qτ , (40)

where p̃ is the solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + v(t, a) p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) = M
∫ a†

0
p̃(t, a) da, t ∈ (0, τ )

p̃(0, a) = p0(a), a ∈ (0, a†),

(41)

where M := ‖β0‖L∞(Qτ ).
There may be again three subcases to discuss, depending on the order relationship

of a† − 2a2 + ε, a† − 2a2 + 2ε and 0 (since the expression of the solution p̃ of
(41) may be different in each subcase). Here, we do the proof only in the case when
a† − 2a2 + ε > 0 (namely, the case when a2 is sufficiently small) which is pictured in
Fig. 5. In this case, integrating along the characteristic lines, we get that the solution
p̃ of (41) satisfies

p̃(t, a) = p0(a − t) exp

(

−
∫ a

a−t

ds

a2 − s

)
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if ε − a2 � t − a � 0, a ∈ [0, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ a

0

ds

a2 − s

)

if 0 < t − a � a† − 2a2 + ε, a ∈ [0, a2],

p̃(t, a) = p̃(t − a, 0) exp

(

−
∫ t

t−a

ds

a† − a2 + ε − s

)

if a† − 2a2 + ε < t − a � a† − 2a2 + 2ε, a ∈ [0, a2],

p̃(t, a) = p̃(t − a, 0)

if a†−2a2+2ε < t−a � a†−a2+ε, t ∈ [a†−2a2+2ε, a†−a2+ε], a ∈ [0, a2−ε],
so that we have

p̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2−a
a2−(a−t) p0(a − t) if

{
ε − a2 � t − a � 0,

a ∈ [0, a2],
a2−a
a2

p̃(t − a, 0) if

{
0 < t − a � a† − 2a2 + ε,

a ∈ [0, a2],
a†−a2+ε−t

a†−a2+ε−(t−a)
p̃(t − a, 0) if

{
a† − 2a2 + ε < t − a � a† − 2a2 + 2ε,

a ∈ [0, a2],

p̃(t − a, 0) if

⎧
⎪⎨

⎪⎩

a† − 2a2 + 2ε < t − a � a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],
a ∈ [0, a2 − ε].

(42)

We may conclude from the above formulas that we have

{
p̃(t, a2) = 0 if t ∈ (ε, a† − a2 + ε),

p̃(a† − a2 + ε, a) = 0 if a ∈ (a2 − ε, a2).
(43)

Integrating on the characteristic lines the equation satisfied by p̃, we get from (43)
that

p̃(t, a) = 0 if (t, a) ∈ [a† − a2 + ε, τ ] × [a2, a†]. (44)

By (44) we get that

− 1

τ − t
χ[0,a2](a) p̃(t, a) = − 1

τ − t
p̃(t, a)
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a.e. (t, a) ∈ [a† − a2 + ε, τ ] × (0, a†), and so we may infer that p̃ is the unique
nonnegative solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + 1
τ−t p̃(t, a) = 0, (t, a) ∈ (a† − a2 + ε, τ ) × (0, a†)

p̃(t, 0) = M
∫ a†

0
p̃(t, a) da, t ∈ (a† − a2 + ε, τ )

p̃(a† − a2 + ε, a) = p̃(a† − a2 + ε, a), a ∈ (0, a†).

We may conclude that

p̃(t, a) = h(t)g(t, a)

a.e. (t, a) ∈ [a† − a2 + ε, τ ] × (0, a†) ( p̃ is separable), where g is the solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂g
∂t (t, a) + ∂g

∂a (t, a) = 0, (t, a) ∈ (a† − a2 + ε, τ ) × (0, a†)

g(t, 0) = M
∫ a†

0
g(t, a) da, t ∈ (a† − a2 + ε, τ )

g(a† − a2 + ε, a) = p̃(a† − a2 + ε, a), a ∈ (0, a†),

and h is the solution to

⎧
⎨

⎩

h′(t) + 1

τ − t
h(t) = 0, t ∈ (a† − a2 + ε, τ )

h(a† − a2 + ε) = 1.

Hence for every t ∈ [a† − a2 + ε, τ ] we have

h(t) = 1

τ − (a† − a2 + ε)
(τ − t). (45)

By (45) we get that p̃(τ, a) = 0 a.e. a ∈ (0, a†) and consequently

p(τ, a) = 0

a.e. a ∈ (0, a†).
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It remains to prove that the control u = −vp belongs to L2(Qτ ). For almost every
(t, a) ∈ (0, a† − a2 + ε) × (0, a2), from (39) and (42) we have that

|v p̃| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(a − t)

a2 − (a − t)
if

{
ε − a2 � t − a � 0,

a ∈ [0, a2],
p̃(t − a, 0)

a2
if

{
0 < t − a � a† − 2a2 + ε,

a ∈ [0, a2],
p̃(t − a, 0)

a† − a2 + ε − (t − a)
if

{
a† − 2a2 + ε < t − a � a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if

⎧
⎪⎨

⎪⎩

a† − 2a2 + 2ε < t − a � a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],
a ∈ [0, a2 − ε],

(46)

and it follows from (46) that we have

|v p̃| �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p0(a − t)|
ε

if

{
ε − a2 � t − a � 0,

a ∈ [0, a2],
| p̃(t − a, 0)|

a2
if

{
0 < t − a � a† − 2a2 + ε,

a ∈ [0, a2],
| p̃(t − a, 0)|

a2 − ε
if

{
a† − 2a2 + ε < t − a � a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if

⎧
⎪⎨

⎪⎩

a† − 2a2 + 2ε < t − a � a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],
a ∈ [0, a2 − ε].

(47)

Since p̃ ∈ L2((0, a† − a2 + ε) × (0, a†)), we may infer from the renewal law that we
have p̃(·, 0) ∈ L2(0, a† − a2 + ε), so that from (47) we have v p̃ ∈ L2((0, a† − a2 +
ε)× (0, a†)). Given (40), it follows that we have vp ∈ L2((0, a† − a2 + ε)× (0, a†)).

On the other hand, for almost every (t, a) ∈ (a† − a2 + ε) × (0, a2) we have

|v(t, a)p(t, a)| ≤ |v(t, a) p̃(t, a)| = 1

τ − t
h(t)g(t, a) = 1

τ − (a† − a2 + ε)
g(t, a),

and so that vp ∈ L2((a† − a2 + ε, τ ) × (0, a2)), which ends the proof of Proposition
3(i). ��
Remark 1 Note that actually, in the above proof, the control u defined by u(t) =
− 1

τ−t p̃(t) for every t ∈ (a† − a2 + ε, τ ) is the feedback null control as defined by
(8) (see Sect. 2) associated to the Lotka-McKendrick semigroup where the functions
β and μ are defined by β(a) := M and μ(a) := 0 for almost every a ∈ (0, a2).
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Proof of Proposition 3(ii) and (iii) The proof of Proposition 3(ii) follows the proof of
Proposition 2(i), taking ab = 0 and a1 > 0, so we omit it. Moreover, the proof of
Proposition 3(iii) is the same as the proof of Proposition 2(ii), Case 1. ��

Note that the proof of Theorem 3 follow closely the proofs of Theorems 1 and 2
(see Sects. 3 and 4), so we omit it.

6 An application of the linear controllability results: from a
population to another one

In this section, we give an application of Propositions 1 and 3 to a linear population
control problem. The aim of this section is, roughly speaking, to steer an initial popu-
lation density to another population density in sufficiently large time, dealing with age
restriction. More precisely, let τ be a positive constant and assume that p̃ is solution
to the system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ p̃
∂t (t, a) + ∂ p̃

∂a (t, a) + μ0(t, a) p̃(t, a) = χ[a1,a2](a)w(t, a), (t, a) ∈ Qτ

p̃(t, 0) =
∫ a†

0
β0(t, a) p̃(t, a) da, t ∈ (0, τ )

p̃(0, a) = p̃0(a), a ∈ (0, a†),

(48)

where the functions μ0 and β0 are assumed to follow (L1)–(L4) (see Sect. 3),
w ∈ L2(Qτ ) is a nonnegative function and p̃0 ∈ L2(0, a†) is a nonnegative ini-
tial population density. We aim to find a control function u ∈ L2(Qτ ) such that the
corresponding unique solution p to (10) coincides with the solution p̃ to (48) in time τ ,
while preserving the nonnegativity of p. Such a problem has been studied, for instance,
in the pioneering work [6] and more recently in [8], assuming that the functions μ0,
β0 and w do not depend on the time, the control function u is supported in the age
interval (0, a0) for some a0 < a† and p̃ is a steady state of (10). The main novelty we
bring here is that wemay be able to steer the solution p of (10) to the solution p̃ of (48)
by means of a feedback control function u, without considering the above-mentioned
restrictions. More precisely, we have

Proposition 4 With the above notations and assumptions, assume that at least one of
the two following conditions is fulfilled.

Condition 1 There exists ab ∈ (0, a†) such that (12) is satisfied, with a1 < ab and
τ > a† − a2 + a1,

Condition 2 a1 = 0 and τ > a† − a2.
Suppose that w and p̃ are both nonnegative functions in L2(Qτ ), where p̃ is the

solution of (48). Then for every p0 ∈ L2(0, a†) with p0(a) � 0 a.e. a ∈ (0, a†), there
exists u ∈ L2(Qτ ) and a unique nonnegative solution p of (10) such that

p(τ, a) = p̃(τ, a) a.e. a ∈ (0, a†).
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Proof Suppose, first, that the Condition 1 of Proposition 4 is fulfilled. For almost every
(t, a) ∈ Qτ , we set

u(t, a) := w(t, a) − v(t, a)(p(t, a) − p̃(t, a)) a.e. (t, a) ∈ Qτ , (49)

where v is defined by (13) [resp. by (21)] in the case where a2 � ab (resp. in the case
where ab < a2).

Denoting by h := p − p̃, using (10), (48) together with the above definition of the
control function u given by (49), we get that h is solution of the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂h
∂t (t, a) + ∂h

∂a (t, a)

+μ0(t, a)h(t, a) = −χ[a1,a2](a)v(t, a)h(t, a), (t, a) ∈ Qτ

h(t, 0) =
∫ a†

0
β0(t, a)h(t, a) da, t ∈ (0, τ )

h(0, a) = h0(a), a ∈ (0, a†),

(50)

where h0(a) := p0(a) − p̃0(a) for almost every a ∈ (0, a†). From the proof of
Proposition 1, we get that the solution h of (50) satisfies h(τ, ·) = 0, with vh ∈
L2(Qτ ). It follows that we have p(τ, ·) = p̃(τ, ·) and u = w − vh ∈ L2(Qτ ).

It remains to show that the unique solution p to (10) corresponding to u defined by
(49) is nonnegative. Since u is defined by (49), we get that p is solution to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ p
∂t (t, a) + ∂ p

∂a (t, a)

+μ̃(t, a)p(t, a) = χ[a1,a2](a)(w(t, a) + v(t, a) p̃(t, a)), (t, a) ∈ Qτ

p(t, 0) =
∫ a†

0
β0(t, a)p(t, a) da, t ∈ (0, τ )

p(0, a) = p0(a), a ∈ (0, a†),

(51)

where μ̃(t, a) := μ0(t, a) + χ[a1,a2]v(t, a) for almost every (t, a) ∈ Qτ . Noting that,
for almost every (t, a) ∈ Qτ we have

χ[a1,a2](a)(w(t, a) + v(t, a) p̃(t, a)) � 0 a.e. (t, a) ∈ Qτ ,

it follows from the comparison principle for linear age-structured population dynamics
[see Theorem 4(i)] that the solution p of (51) satisfies p(t, a) � 0 for almost every
(t, a) ∈ Qτ .

In the case where the Condition 2 is fulfilled, we may consider v as defined by (39)
and follow the above proof to get the desired result. ��
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7 Lack of null controllability for the Lotka-McKendrick equation with
spatial diffusion and positivity constraints

In this section, we consider a linear controlled age-structured population model with
spatial diffusion described by the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ p
∂t (t, a, x) + ∂ p

∂a (t, a, x) + μ(t, a)p(t, a, x) − Δp(t, a, x)
= χω(x)u(t, a, x), (t, a) ∈ Qτ , x ∈ Ω

∂ p

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p(t, 0, x) =
∫ a†

0
β(t, a)p(t, a, x) da, t ∈ (0, τ ), x ∈ Ω

p(0, a, x) = p0(a, x), a ∈ (0, a†), x ∈ Ω.

(52)

In the above equations:

• Ω ⊂ R
N , N � 1, denotes a smooth connected bounded domain and Δ is the

Laplacian with respect to the variable x ;

• ∂

∂ν
denotes the derivation operator in the direction of the unit outer normal to ∂Ω .

We thus have homogeneous Neumann boundary conditions; thus, the considered
population is isolated from the exterior of Ω;

• p(t, a, x) denotes the distribution density of the population at time t , of age a at
spatial position x ∈ Ω;

• p0 denotes the initial population distribution;
• a† ∈ (0,+∞) is the maximal age of an individual;
• β and μ are nonnegative functions denoting respectively the birth and death rates;
• ω ⊂⊂ Ω is a nonempty open subset of Ω and χω denotes the characteristic
function of ω.

Let τ be a positive constant. We make the following classical assumptions on β and
μ:

(D1) β ∈ L∞(Qτ ), β(t, a) � 0 for almost every (t, a) ∈ Qτ ,
(D2) μ ∈ L1

loc([0, τ ] × [0, a†)) , μ(t, a) � 0 almost every (t, a) ∈ Qτ .

From a controllability view point, system (52) has been extensively studied in the
past decades. The particular case when the control acts in the whole space (the case
corresponding to ω = Ω) was investigated by Aniţa (see [5], p 148). The case when
the control acts in a spatial subdomain ω was firstly studied by Ainseba [1], where
the author proves the null controllability of the above system (52), except for a small
interval of ages near zero. The case when the control acts in a spatial subdomain
ω and also only for small age classes was investigated by Ainseba and Aniţa [2],
for initial data p0 in a neighborhood of the target p̃. Related approximate and exact
controllability issues have also been studied in Ainseba and Langlais [4], Ainseba and
Iannelli, Traore [17], Kavian and Traore [12].

In a recent work, Hegoburu and Tucsnak [9] proved that, in the case where both
functions β and μ do not depend on the time variable, the above system (52) is null
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controllable in any time τ > 0, in the sense that for any p0 ∈ L2((0, a†) × Ω), there
exists a control function u ∈ L∞(0, τ ; L2((0, a†) × Ω)) such that the corresponding
solution p of (52) satisfies

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†) × Ω.

This result has been recently improved by Maity et al. [15], assuming that the young
individuals are not able to reproduce before some age ab > 0, where the control
function u in system (52) has support in some interval of ages [a1, a2], where 0 �
a1 < a2 � a†. In [15], the authors proved the null controllability result with this
additional age restriction, provided that the control time τ is large enough, and the age
a1 is smaller than ab.

The aim of this section is to prove that, in general, the solution p of the controlled
system may not be positive in the whole time interval [0, τ ]. More precisely, we have:

Proposition 5 Let τ > 0. With the above notations and assumptions, suppose that for
almost every t ∈ [0, τ ], we have that

β(t, ·) is positive on a subset of positive measure of (0, a†), (53)

and denote by

Et := {a ∈ (0, a†); β(t, a) 	= 0} and E+
t := sup Et . (54)

Suppose that

m := inf
{
E+
t , t ∈ [0, τ ]} > 0. (55)

Then there exists p0 ∈ L2((0, a†) × Ω) with p0(a, x) � 0 for almost every
(a, x) ∈ (0, a†) × Ω such that there does not exists a control function u ∈
L2((0, τ ); L2((0, a†) × Ω)) such that

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†) × Ω,

together with

p(t, a, x) � 0 a.e. (t, a, x) ∈ Qτ × Ω.

In other words, for some well chosen nonnegative initial condition p0 ∈ L2((0, a†)×
Ω), it is not possible to eradicate the whole population in time τ while keeping the
nonnegativity of the state trajectory.

Proof Let τ > 0, and assume that (53) and (55) are satisfied. Denote by ωc the
complementary of ω in Ω . Let h0 ∈ L2(Ω) be a nonnegative function such that for
almost every x ∈ ωc we have

h0(x) > 0 a.e. x ∈ ωc. (56)
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For almost every (a, x) ∈ (0, a†) × Ω , we set

p0(a, x) := h0(x). (57)

It is clear that the initial condition p0 defined by (57) belongs to L2((0, a†) × Ω)

and is a nonnegative function. Let τ > 0. Suppose that there exists a control function
u ∈ L2((0, τ ); L2((0, a†) × Ω)) such that the two following conditions are fulfilled:

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†) × Ω,

and

p(t, a, x) � 0 a.e. (t, a, x) ∈ Qτ × Ω,

where p is the solution of (52).
In the subdomain Qτ × ωc, given (52) and (57), the function p satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ p
∂t (t, a, x) + ∂ p

∂a (t, a, x)
+μ(t, a)p(t, a, x) − Δp(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ωc

∂ p

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p(t, 0, x) =
∫ a†

0
β(t, a)p(t, a, x) da, t ∈ (0, τ ), x ∈ ωc

p(0, a, x) = h0(x), a ∈ (0, a†), x ∈ ωc.

By the comparison principle, for almost every (t, a, x) ∈ Qτ × ωc, we have that

p(t, a, x) � p̃(t, a, x) � 0, (58)

where the function p̃ satisfies the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ p̃
∂t (t, a, x) + ∂ p̃

∂a (t, a, x)
+μ(t, a) p̃(t, a, x) − Δ p̃(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ωc

p̃(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂ω
∂ p̃

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p̃(t, 0, x) =
∫ a†

0
β(t, a) p̃(t, a, x) da, t ∈ (0, τ ), x ∈ ωc

p̃(0, a, x) = h0(x), a ∈ (0, a†), x ∈ ωc.

(59)

Note that the above system (59) is separable, in the sense that the solution p̃ to (59)
writes as

p̃(t, a, x) = g(t, a)h(t, x) a.e. (t, a, x) ∈ Qτ × ωc, (60)
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where the functions g ∈ C([0, τ ]×[0, a†] \ S) (S = {(t, a) ∈ [0, τ ]×[0, a†]; t = a})
and h ∈ C([0, τ ]; L2(Ω)) are respectively solutions to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂g
∂t (t, a) + ∂g

∂a (t, a) + μ(t, a)g(t, a) = 0, (t, a) ∈ Qτ

g(t, 0) =
∫ a†

0
β(t, a)g(t, a) da, t ∈ (0, τ )

g(0, a) = 1, a ∈ (0, a†),

(61)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂h
∂t (t, x) − Δh(t, x) = 0, t ∈ (0, τ ), x ∈ ωc

h(t, x) = 0, t ∈ (0, τ ), x ∈ ∂ω
∂h

∂ν
(t, x) = 0, t ∈ (0, τ ), x ∈ ∂Ω

h(0, x) = h0(x), x ∈ ωc.

Given assumptions (53) and (55), let us prove that, for every τ > 0, we have that
g(τ, a) > 0 on a subset of positive measure of (0, a†). To this aim, integrating along
the characteristics the equation satisfied by g, for almost every (t, a) ∈ Qτ we have

g(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

exp

(

−
∫ t

0
μ(s, a − t + s) ds

)

, a � t,

exp

(

−
∫ a

0
μ(t − a + s, s) ds

)

B(t − a), a < t,
(62)

where

B(t) =
∫ a†

0
β(t, a)g(t, a) da a.e. t ∈ (0, τ ).

Suppose that there exists τ > 0 such that for almost every a ∈ (0, a†) we have
g(t, a) = 0, where g satisfies (61). Given (62), necessarily, we have τ � a†. Assuming
that g(τ, a) = 0 for almost every a ∈ (0, a†) for some τ � a†, from (62) we have

B(s) = 0 a.e. s ∈ (τ − a†, τ ),

so that, in particular, we have

B(τ − a†) =
∫

Eτ−a†

β(τ − a†, a)g(τ − a†, a) da = 0, (63)

where Eτ−a† is defined by (54). Since β(τ − a†, a) > 0 for almost every a ∈ Eτ−a†
and p is assumed to be positive, from (63) we get that for almost every a ∈ Eτ−a† ,
we have

g(τ − a†, a) = 0 a.e. a ∈ Eτ−a† . (64)
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Denote by E (1) := E+
τ−a† , where E+

τ−a† is defined by (54). From (64), we have

g(τ − a†, E
(1)) = 0. (65)

If E (1) � τ − a†, the above condition (65) gives a contradiction with (62). Otherwise,
we have E (1) < τ − a† and integrating along the characteristics, we have

g(τ − a† − E (1), 0) = 0.

Denote by E (2) = E+
τ−a†−E (1) . Following the previous arguments, we may deduce

from the renewal law that we have

g(τ − a† − E (1), E (2)) = 0. (66)

If E (2) � τ − a† − E (1), the above condition (66) gives a contradiction with (62).
Otherwise, we have E (2) < τ − a† − E (1) and integrating along the characteristics,
we have

g(τ − a† − E (1) − E (2), 0) = 0.

Define, recursively, the sequence (E (n))n�1 by E (1) := E+
τ−a† and E (n+1) :=

E+
τ−a†−E (1)−···−E (n) . Following the above procedure, we way obtain by induction that

for every n � 1 such that τ − a† − E (1) − · · · − E (n) � 0, we have

g(τ − a† − E (1) − · · · − E (n), E (n+1)) = 0.

Recall that there exists m > 0 such that, for almost every t ∈ [0, τ ] we have E+
t �

m > 0. Thus, denote by l the first integer such that

τ − a† − E (1) − · · · − E (l) − E (l+1) � 0.

Then, the condition

g(τ − a† − E (1) − · · · − E (l), E (l+1)) = 0,

gives a contradiction with (62), since E (l+1) � τ − a† − E (1) − · · · − E (l). It follows
that g(τ, ·) cannot be the null function. By (60) we have that h(τ, x) = 0 for almost
every x ∈ ωc. From the backward uniqueness for the parabolic equations, we have
h0(x) = 0 for almost every x ∈ ωc. This is a contradiction with (56). ��
Remark 2 Using the comparison results for age-structured population dynamics with
spatial diffusion and feedback controls of harvesting type, it is possible to obtain null-
controllability results when the control function u acts in the whole habitat Ω , for any
t ∈ (0, τ ) but only for some age subinterval.

123



2 Page 38 of 38 Mathematics of Control, Signals, and Systems (2019) 31 :2

Acknowledgements Thanks are due to theAnonymousReferees for their precious advices and suggestions.

References

1. Ainseba B (2002) Exact and approximate controllability of the age and space population
dynamics structured model. J Math Anal Appl 275(2):562–574. https://doi.org/10.1016/S0022-
247X(02)00238-X
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