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CONTROLLABILITY WITH POSITIVITY CONSTRAINTS OF THE
LOTKA--MCKENDRICK SYSTEM\ast 

NICOLAS HEGOBURU\dagger , PIERRE MAGAL\dagger , AND MARIUS TUCSNAK\dagger 

Abstract. This work considers the linear Lotka--McKendrick system from population dynamics
with control active on individuals in a prescribed age range. The main results assert that, given \tau 
large enough (but possibly smaller than the life expectancy), there exist controls driving the system
to any equilibrium state or any uncontrolled trajectory in time \tau . Moreover, we show that if the initial
and final states are positive, then the constructed controls preserve the positivity of the population
density on the whole time interval [0, \tau ]. The method is a direct one, in the spirit of some early works
on the controllability of hyperbolic systems in one space dimension. Finally, we apply our method
to a nonlinear infection-age model.
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1. Introduction. The purpose of this work is the study of the controllability
properties of an infinite-dimensional dynamical system coming from population dy-
namics. More precisely, we revisit from a control theoretical viewpoint the linear
Lotka--McKendrick model. We aim, in particular, to answer some open questions
raised in Barbu, Iannelli, and Martcheva [8]. More precisely, let p(t, a) be the distri-
bution of individuals of age a \geqslant 0 at time t \geqslant 0. Let a\dagger be the life expectancy of an
individual, and let \tau be a positive constant. Let \beta (a) \geqslant 0 be the natural fertility rate
and \mu (a) \geqslant 0 the natural death rate of individuals of age a. The system we consider,
already studied from a control theoretic viewpoint in [8], is described by the equations

(1.1)

\left\{                 

\partial p

\partial t
(t, a) +

\partial p

\partial a
(t, a) + \mu (a)p(t, a)

= m(a)u(t, a), (t, a) \in Q\tau ,

p(t, 0) =

\int a\dagger 

0

\beta (a)p(t, a) da, t \in (0, \tau ),

p(0, a) = p0(a), a \in (0, a\dagger ),

where u is a control function, m = 1[0,a0] is the characteristic function of the interval
(0,a0) (where 0 < a0 < a\dagger ), p0 is the initial population density, and Q\tau = (0, \tau ) \times 
(0, a\dagger ).

In [8] the main result asserts controllability of the above system to any quasi
steady state by a distributed control, except for a small interval of ages near zero.
The main open questions raised in the above-mentioned reference are the possibility of
controlling the whole range of ages and designing controls which preserve the positivity
of the state trajectories. We give a positive answer to both questions above, in the
particular case when the age of individuals able to reproduce is bounded away from
zero.
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724 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

To state our main results, we first recall the standard assumptions, used in par-
ticular in [8], on the functions \mu and \beta :

(H1) \beta \in L\infty (0, a\dagger ), \beta (a) \geqslant 0 for almost every a \in (0, a\dagger ).
(H2) \mu \in L1[0, a\ast ] for every a\ast \in (0, a\dagger ), \mu (a) \geqslant 0 for almost every a \in (0, a\dagger ).
(H3)

\int a\dagger 
0

\mu (a) da = +\infty .
The controllability result [8] asserts that if \delta \in (0, a0] and if \~p is a time-independent
function which satisfies the equations

(1.2)

\left\{       
\partial \~p

\partial a
(a) + \mu (a)\~p(a) = m(a)w(a) (a \in (0, a\dagger )),

\~p(0) =

\int a\dagger 

0

\beta (a)\~p(a) da

for some function w \in L2[0, a\dagger ], then for every p0 \in L2[0, a\dagger ] and every time

(1.3) a\dagger \leqslant \tau < a\dagger + \delta ,

there exists u \in L2([0, \tau ];L2[0, a\dagger ]) such that

p(\tau , a) = \~p(a) (a \in [\delta , a\dagger ]).

In other words, the above result from [8] asserts that we can control in a time \tau 
satisfying (1.3) the population of individuals of age at least equal to some \delta > 0. Our
main result asserts that this restriction is not necessary, provided that we assume that
the age of individuals able to reproduce is bounded away from zero. More precisely,
we have the following.

Theorem 1.1. With the above notation and assumptions, suppose that there ex-
ists ab \in (0, a\dagger ) such that

(1.4) \beta (a) = 0 (a \in (0, ab) a.e.).

Then for every \tau > a\dagger  - a0, for every p0 \in L2([0, a\dagger ]) with p0(a) \geqslant 0 for almost
every a \in (0, a\dagger ), and for any positive function \~p satisfying (1.2), there exists u \in 
L2([0, \tau ];L2[0, a\dagger ]) such that the solution p of (1.1) satisfies

p(\tau , a) = \~p(a) (a \in (0, a\dagger ) a.e.),

and

p(t, a) \geqslant 0 a.e. (t, a) \in Q\tau .

For an overview on age-structured population dynamics models, we refer the
reader to Webb [26], Iannelli [13], Kunisch, Schappacher, and Webb [18] and references
therein. For related work on size-structured population dynamics, see Ackleh and
Ito [1] and Ito, Kappel, and Peichl [14].

The literature devoted to the associated control problems is less abundant, but
several important results and methods are available. For optimal control problems
(namely applied to human population) we refer the reader to Song and Yu [22].
The null controllability of the age-dependent population dynamics (1.1) with spatial
dependence in the particular case when the control acts for all ages a (the case cor-
responding to a0 = a\dagger ) was investigated by Ani\c ta (see [6, p. 148]). The case when
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CONTROLLABILITY OF THE LOTKA--MCKENDRICK SYSTEM 725

the control acts in a spatial subdomain \omega and only for small age classes was investi-
gated by Ainseba and Ani\c ta [3] for initial data p0 in a neighborhood of the target \~p.
Related approximate and exact controllability issues have also been studied in Ain-
seba [2], Ainseba and Langlais [5], Ainseba and Iannelli [4], Traore [24], and Kavian
and Traore [17]. Using a direct approach, the approximate controllability by birth or
boundary control was studied in Yu, Guo, and Zhu [27].

The remaining part of this work is organized as follows. In section 2 we recall
some basic results on the Lotka--McKendrick semigroup. Section 3 is devoted to the
study of the reachable space of (1.1). In section 4 we investigate some controllability
properties of system (1.1). In particular, we give the proof of Theorem 1.1. In section 5
we discuss a singular perturbation problem. More precisely we show that if the age
interval on which our control is active shrinks to \{ 0\} , the system (including controls
and state trajectories) converges to a direct birth controlled system (which can be seen
as an ``impulse"" control). In section 6 we show how our results apply to a nonlinear
system arising in an infection-age model. We close with an appendix showing that
the considered system is still null controllable in an L1 setting.

2. Some background on the Lotka--McKendrick semigroup. In this sec-
tion we recall, with no claim of originality, the formulation of equations (1.1) using
semigroup theory.

Denote X = L2[0, a\dagger ] and consider the operator A : \scrD (A) \rightarrow X defined by

(2.1)

\scrD (A) =

\biggl\{ 
\varphi \in L2[0, a\dagger ] | \varphi (0) =

\int a\dagger 

0

\beta (a)\varphi (a) da;  - d\varphi 

da
 - \mu \varphi \in L2[0, a\dagger ]

\biggr\} 
,

A\varphi =  - d\varphi 

da
 - \mu \varphi (\varphi \in \scrD (A)).

It is well known (see, for instance, Song et al. [23] or Kappel and Zhang [16]) that A
generates a C0 semigroup of linear operators in X which we denote by \BbbT = (\BbbT t)t\geqslant 0.
This allows us to define the concept of a (mild) solution of (1.1) in the following
standard way: We say that p is a mild solution of (1.1) if

(2.2) p(t, \cdot ) = \BbbT tp0 +\Phi tu (t \geqslant 0, u \in L2([0,\infty );X)),

where the control operator B \in \scrL (X) is defined by

Bu = mu (u \in X),

and where

(2.3) \Phi tu =

\int t

0

\BbbT t - \sigma Bu(\sigma ) d\sigma (t \geqslant 0, u \in L2([0,\infty );X)).

It is well known (see, for instance, [13] or [26]) that the semigroup \BbbT satisfies

(2.4) (\BbbT tf)(a) =

\left\{   
\pi (a)

\pi (a - t)
f(a - t) if t \leqslant a,

\pi (a)b(t - a) if t > a,

where \pi (a) = e - 
\int a
0

\mu (\sigma ) d\sigma is the probability of survival of an individual from age 0 to a
and b(t) = (\BbbT tf)(0) =

\int a\dagger 
0

\beta (a)(\BbbT tf)(a) da is the total birth rate function. Moreover,
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726 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

according, for instance, to [13, p. 12], b is the unique continuous function satisfying
the integral Volterra equation of the second kind:

(2.5) b(t) =

\int min(t,a\dagger )

0

\beta (t - s)\pi (t - s)b(s) ds+

\int a\dagger 

min(t,a\dagger )

\beta (a)
\pi (a)

\pi (a - t)
f(a - t) da.

The state trajectory p of the controlled system (1.1) is given (see, for instance,
[8]) by

(2.6) p(t, a) :=

\left\{     
\pi (a)

\pi (a - t)
p0(a - t) + c(t, a), t \leqslant a,

\pi (a)\~b(t - a) + c(t, a), a < t,

where

(2.7) c(t, a) :=

\left\{       
\int a

a - t

\pi (a)

\pi (s)
m(s)u(s - (a - t), s) ds, t \leqslant a,\int a

0

\pi (a)

\pi (s)
m(s)u(s+ (t - a), s) ds, a < t,

where \~b(t) =
\int a\dagger 
0

\beta (a)p(t, a) da is the flux of newly born individuals for the controlled

system. It is easy to check that \~b is the unique continuous function satisfying the
Volterra integral equation

(2.8)

\~b(t) =

\int min(t,a\dagger )

0

\beta (t - s)
\Bigl[ 
\pi (t - s)\~b(s) + c(t, t - s)

\Bigr] 
ds

+

\int a\dagger 

min(t,a\dagger )

\beta (a)

\biggl[ 
\pi (a)

\pi (a - t)
p0(a - t) + c(t, a)

\biggr] 
da.

Remark 2.1. The control u constructed in the following section will be of the form

u(t, a) = v(t - a) (a \in [0, a\dagger ], t \in [0, \tau ]),

where v : [ - a\dagger , \tau ] \rightarrow \BbbR . In this case (2.6) becomes

(2.9) p(t, a) =

\left\{       
\pi (a)

\pi (a - t)
p0(a - t) + v(t - a)

\int a

a - t

\pi (a)

\pi (s)
m(s) ds, a \geqslant t,

\pi (a)\~b(t - a) + v(t - a)

\int a

0

\pi (a)

\pi (s)
m(s) ds, a < t.

Remark 2.2. If the state space X = L2[0, a\dagger ] is substituted by X = L1[0, a\dagger ], the
operator A : \scrD (A) \rightarrow X defined by
(2.10)

\scrD (A) =

\biggl\{ 
\varphi \in L1[0, a\dagger ]

\bigm| \bigm| \bigm| \bigm| \varphi (0) =

\int a\dagger 

0

\beta (a)\varphi (a) da;  - d\varphi 

da
 - \mu \varphi \in L1[0, a\dagger ]

\biggr\} 
,

A\varphi =  - d\varphi 

da
 - \mu \varphi (\varphi \in \scrD (A))

generates a C0 semigroup of linear operators in X denoted by \BbbT = (\BbbT t)t\geqslant 0 (see, for
instance, Banks and Kappel [7]). This allows us to define the concept of a (mild)
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CONTROLLABILITY OF THE LOTKA--MCKENDRICK SYSTEM 727

solution of (1.1) in the same way as above: We say that p is a mild solution of (1.1)
if

(2.11) p(t, \cdot ) = \BbbT tp0 +\Phi tu (t \geqslant 0, u \in L1([0,\infty );X)),

where the control operator B \in \scrL (X) is defined by

Bu = mu (u \in X),

and where

(2.12) \Phi tu =

\int t

0

\BbbT t - \sigma Bu(\sigma ) d\sigma (t \geqslant 0, u \in L1([0,\infty );X)).

The semigroup \BbbT satisfies the same formulas (2.4) as in the L2 setting.

3. Study of the reachable space. In this section, we study the reachable space
of (1.1) by means of controls u \in L2([0, \tau ];L2[0, a\dagger ]). In other words, we study the
space Ran \Phi \tau , for every \tau > 0, where the operator \Phi \tau has been defined in (2.3). In
order to obtain controllability results, we focus on the case \tau > a\dagger  - a0 since in the
opposite case, as shown below, we have neither approximate nor null controllability.
For the sake of completeness, we recall that the property of approximate controllability
in some time \tau > 0 means that Ran \Phi \tau is dense in X and that the null controllability
in time \tau means that Ran \Phi \tau \supset Ran \BbbT \tau (we refer the reader, for instance, to [25,
Chapter 11] for a detailed description of these concepts).

Proposition 3.1. Suppose that \tau < a\dagger  - a0. Then system (1.1) is neither ap-
proximatively controllable nor null controllable in time \tau .

Proof. Let \tau \in ]0, a\dagger  - a0[. Then for every u \in L2([0, \tau ];L2[0, a\dagger ]) and for almost
every a \in (a0 + \tau , a\dagger ), we have from (2.6) that

(3.1) (\Phi \tau u)(a) =

\int a

a - \tau 

\pi (a)

\pi (s)
m(s)u(s+ (\tau  - a), s) ds = 0,

since m(s) = 0 if s \geqslant a  - \tau > a0. This clearly implies that system (1.1) is not
approximately controllable in time \tau .

On the other hand, (2.4) implies that there exists p0 \in X such that (\BbbT \tau p0)(a) \not = 0
on [a0 + \tau , a\dagger ]. Consequently, Ran\Phi \tau \not \supset Ran\BbbT \tau , so that (1.1) is not null controllable
in time \tau .

The following is the main result.

Theorem 3.2. Under the assumptions of Theorem 1.1, define
(3.2)

\scrR :=

\left\{   \~p \in X

\bigm| \bigm| \bigm| \bigm| a \mapsto \rightarrow \~p(a)

\pi (a)
\in X, a \mapsto \rightarrow 

\~p(a)
\pi (a)  - 

\int a\dagger  - a

0
\beta (x) \pi (x)

\pi (a+x) \~p(a+ x) dx\int a

0
m(x)
\pi (x) dx

\in X

\right\}   .

Then for every \tau > a\dagger  - a0 we have \scrR \subset Ran \Phi \tau .

Proof. We can assume, without loss of generality, that a0 \leqslant ab (otherwise we
simply control the system for smaller ages). Let \tau \in (a\dagger  - a0, a\dagger ).

We define the sets \{ P j
\tau \} j\geqslant  - 1 by

P - 1
\tau = \{ (t, a) \in (0,+\infty )2 : \tau  - a\dagger \leqslant t - a \leqslant 0\} 
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728 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

Fig. 1. In this figure the control possibly acts in the subset of Q\tau = [0, \tau ] \times [0, a\dagger ] delimited

by the line a = 0 and the red curve. The domain Q\tau is decomposed into subregions P - 1
\tau , P 0

\tau , P
1
\tau ,

P 2
\tau , . . . , which are delimited, respectively, by the characteristics lines t  - a = \tau  - a\dagger , t  - a = 0,

t - a = ab, t - a = 2ab, . . . . For each subregion P j
\tau (for j \geqslant 0) the values of \~b(t) =

\int a\dagger 
0 \beta (a)p(t, a) da

for t \in [jab, (j + 1)ab] depend only on the control in the previous subregions P - 1
\tau , . . . , P j - 1

\tau . This
will allow us, using an inductive method, to derive an explicit formula of the control functions in
terms of the targeted distribution of population. (Color available online.)

and for j \geqslant 0

P j
\tau = \{ (t, a) \in (0,+\infty )2 : jab < t - a \leqslant (j + 1)ab\} .

The control region and the sets P j
\tau j\geqslant  - 1 are pictured in Figure 1.

Given \~p \in \scrR , we look for v \in L2[ - a\dagger , \tau ] such that, setting u(t, a) = v(t  - a) for
every t \in [0, \tau ] and a \in [0, a\dagger ], we have

(3.3) \Phi \tau u(a) = \~p(a) (a \in [0, a\dagger ] a.e.).

Case \bfitt  - \bfita < \bfittau  - \bfita \dagger . We first set v(s) = 0 for s \in [ - a\dagger , \tau  - a\dagger ] so that, according
to (2.9), we have

(3.4) (\Phi tu)(a) = 0 (t - a < \tau  - a\dagger ).

Case \bfittau  - \bfita \dagger \leqslant \bfitt  - \bfita \leqslant 0. By using again (2.9), it follows that

(\Phi \tau u)(a) = v(\tau  - a)

\int a

a - \tau 

\pi (a)

\pi (s)
m(s) ds (a \in [\tau , a\dagger ] a.e.).
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CONTROLLABILITY OF THE LOTKA--MCKENDRICK SYSTEM 729

Consequently, (3.3) is satisfied for a \in [\tau , a\dagger ] iff

(3.5) v(s) =

\~p(\tau  - s)
\pi (\tau  - s)\int \tau  - s

 - s
m(x)
\pi (x) dx

(s \in [\tau  - a\dagger , 0] a.e.).

Note that since \tau > a\dagger  - a0, s \in [\tau  - a\dagger , 0] implies that  - s < a0; therefore for every
s \in [\tau  - a\dagger , 0] we have \int \tau  - s

 - s

m(x)

\pi (x)
dx > 0.

Moreover, by assumption we have a \mapsto \rightarrow \~p(a)

\pi (a)
\in L2[0, a\dagger ], and hence

v \in L2[\tau  - a\dagger , 0].

Case 0 < \bfitt  - \bfita < \bfita \bfitb . According to (2.9) and (3.5), for almost every (t, a) \in P - 1
\tau 

we have

(3.6)

(\Phi tu)(a) = v(t - a)

\int a

a - t

\pi (a)

\pi (s)
m(s) ds

= \pi (a)

\int a

a - t
m(s)
\pi (s) ds\int \tau +(a - t)

a - t
m(s)
\pi (s) ds

\~p(\tau + (a - t))

\pi (\tau + (a - t))
.

To determine v on [0, ab] we note that from (2.9) it follows that

(3.7) (\Phi \tau u)(a) = \pi (a)\~b(\tau  - a) + v(\tau  - a)

\int a

0

\pi (a)

\pi (s)
m(s) ds (a \in [\tau  - ab, \tau ] a.e.),

where

(3.8) \~b(t) =

\int a\dagger 

ab

\beta (a)(\Phi tu)(a) da (t \in [0, ab]).

To determine \~b, after some simple calculations and using (3.4), (3.6), and (3.8), it
follows that

(3.9) \~b(t) =

\int t+a\dagger  - \tau 

ab

\beta (a)\pi (a)
\~p(\tau + (a - t))

\pi (\tau + (a - t))
da (t \in [0, ab]).

Inserting (3.9) into (3.7), it follows that

(3.10) (\Phi \tau u)(a) = \pi (a)

\int a\dagger  - a

ab

\beta (x)\pi (x)
\~p(a+ x)

\pi (a+ x)
dx

+ v(\tau  - a)

\int a

0

\pi (a)

\pi (s)
m(s) ds (a \in [\tau  - ab, \tau ] a.e.).

Thus, (3.3) is satisfied for a \in [\tau  - ab, \tau ] iff

(3.11) v(s) =
\~p(\tau  - s) - \pi (\tau  - s)\chi (s)

\pi (\tau  - s)
\int \tau  - s

0
m(x)
\pi (x) dx

(s \in [0, ab] a.e.),

where

(3.12) \chi (s) :=

\int s+a\dagger  - \tau 

ab

\beta (x)\pi (x)
\~p(\tau  - (s - x))

\pi (\tau  - (s - x))
dx (s \in [0, \tau ]).

Since \~p \in L2[0, a\dagger ], we clearly have that v \in L2[0, ab].
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Case \bfitj \bfita \bfitb < \bfitt  - \bfita < (\bfitj  - 1)\bfita \bfitb for some integer \bfitj \geqslant 1. The above calculations
suggest, as a possible control, driving the zero initial state to u(t, a) = v(t - a), where

(3.13) v(s) =

\left\{           
0 for s \in [ - a\dagger , \tau  - a\dagger ],

\~p(\tau  - s)
\pi (\tau  - s)\int \tau  - s

 - s
m(x)
\pi (x)

dx
for s \in [\tau  - a\dagger , 0],

\~p(\tau  - s) - \pi (\tau  - s)\chi (s)

\pi (\tau  - s)
\int \tau  - s
0

m(x)
\pi (x)

dx
for s \in [0, \tau ],

where \chi (s) is defined by (3.12).
To prove this fact we first note that v defined above is in L2[ - a\dagger , \tau ] due to the

fact that \~p \in \scrR . Moreover, we have already seen that (3.13) gives

(\Phi \tau u)(a) = \~p(a) (a \in [\tau  - ab, a\dagger ] a.e.).

We next show by induction over j \geqslant 0 the following properties, which we denote by
(\scrP j):

\bullet \~b(t) = \chi (t) for every t \in [jab, (j + 1)ab].
\bullet (\Phi \tau u)(a) = \~p(a) for a.e. a \in (\tau  - (j + 1)ab, \tau  - jab).

We have seen above that (\scrP 0) is true.
Let j \geqslant 0 be a fixed integer, and suppose that (\scrP i) holds for every i \in \{ 0, . . . , j\} .

Then, for every i \in \{ 0, . . . , j\} and for almost every (t, a) \in P i
\tau , from (2.9) and (3.13),

we have

(3.14) (\Phi tu)(a) = \pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  
+ \pi (a)

\int a

0
m(x)
\pi (x) dx\int \tau  - (t - a)

0
m(x)
\pi (x) dx

\~p(\tau  - (t - a))

\pi (\tau  - (t - a))
.

Combining (3.4), (3.6), and the above formula (3.14), we are in position to compute
\~b(t) for t \in [(j + 1)ab, (j + 2)ab]. Indeed, since \~b(t) =

\int a\dagger 
ab

\beta (a)(\Phi tu)(a) da for every

t \in [(j + 1)ab, (j + 2)ab], we can use (3.4) to obtain that
(3.15)

\~b(t) =

\int t

ab

\beta (a)(\Phi tu)(a) da+

\int t+a\dagger  - \tau 

t

\beta (a)(\Phi tu)(a) da (t \in [(j + 1)ab, (j + 2)ab]).

First according to (3.14), the first integral in the above formula (3.15) writes

\int t

ab

\beta (a)(\Phi tu)(a) da =

\int t

ab

\beta (a)

\left(  \pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  
+\pi (a)

\left[  \int a

0
m(x)
\pi (x) dx\int \tau  - (t - a)

0
m(x)
\pi (x) dx

\right]  \~p(\tau  - (t - a))

\pi (\tau  - (t - a))

\right)  da.

We note that the term contained in the first bracket of the above formula involves
only values of a which are larger than a0, so it vanishes. Moreover the term in the
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second bracket of the last formula is clearly equal to one. Consequently,
(3.16)\int t

ab

\beta (a)(\Phi tu)(a) da =

\int t

ab

\beta (a)\pi (a)
\~p(\tau + (a - t))

\pi (\tau + (a - t))
da (t \in [(j + 1)ab, (j + 2)ab]).

Moreover, by using (3.6) it is not difficult to check that for every t \in [(j + 1)ab,
(j + 2)ab],

(3.17)

\int t+a\dagger  - \tau 

t

\beta (a)(\Phi tu)(a) da =

\int t+a\dagger  - \tau 

t

\beta (a)\pi (a)
\~p(\tau + (a - t))

\pi (\tau + (a - t))
da.

Using (3.15), (3.16), and (3.17) we have
(3.18)

\~b(t) =

\int t+a\dagger  - \tau 

ab

\beta (a)\pi (a)
\~p(\tau + (a - t))

\pi (\tau + (a - t))
da = \chi (t) (t \in [(j + 1)ab, (j + 2)ab]).

Consequently, if (j+1)ab < t - a \leq (j+2)ab, we obtain from (2.9), (3.13), and (3.18)
that

(\Phi tu)(a) = \pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  
+ \pi (a)

\int a

0
m(x)
\pi (x) dx\int \tau  - (t - a)

0
m(x)
\pi (x) dx

\~p(\tau  - (t - a))

\pi (\tau  - (t - a))
.

The above formula implies that (\Phi \tau u)(a) = \~p(a) for almost every a \in (\tau  - (j+2)ab, \tau  - 
(j + 1)ab), which ends the induction proof.

Remark 3.3. Given \tau \in ]a\dagger  - a0, a\dagger [ and \~p \in \scrR , the proof of Theorem 3.2 gives
an explicit formula for a control u \in L2([0, \tau ];L2[0, a\dagger ]) satisfying \Phi \tau u = \~p. More
precisely, for almost every (t, a) \in Q\tau we have

u(t, a) =

\left\{                   

0 if t - a < \tau  - a\dagger ,

\~p(\tau +(a - t))
\pi (\tau +(a - t))\int \tau +(a - t)

a - t
m(x)
\pi (x) dx

if \tau  - a\dagger \leqslant t - a \leqslant 0,

\~p(\tau  - (t - a)) - \pi (\tau  - (t - a))\chi (t - a)

\pi (\tau  - (t - a))
\int \tau  - (t - a)

0
m(x)
\pi (x) dx

if 0 < t - a \leqslant \tau ,

where

\chi (s) =

\int s+a\dagger  - \tau 

ab

\beta (x)\pi (x)
\~p(\tau  - (s - x))

\pi (\tau  - (s - x))
dx (s \in [0, \tau ]).
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732 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

Moreover, for almost every (t, a) \in Q\tau , we have

(\Phi tu)(a) =

\left\{                                                   

0 if t - a < \tau  - a\dagger ,

\pi (a)

\int a

a - t

m(s)

\pi (s)
ds\int \tau +(a - t)

a - t

m(s)

\pi (s)
ds

\~p(\tau + (a - t))

\pi (\tau + (a - t))
if \tau  - a\dagger \leqslant t - a \leqslant 0,

\pi (a)\chi (t - a)

\left[     1 - 
\int a

0

m(s)

\pi (s)
ds\int \tau  - (t - a)

0

m(s)

\pi (s)
ds

\right]     

+ \pi (a)

\int a

0

m(x)

\pi (x)
dx\int \tau  - (t - a)

0

m(x)

\pi (x)
dx

\~p(\tau  - (t - a))

\pi (\tau  - (t - a))
if 0 < t - a \leqslant \tau .

Remark 3.4. For every \varphi \in \scrD (A) with \varphi 
\pi \in X, we have \varphi \in \scrR . Indeed, for every

\varphi \in \scrD (A), there exists f \in X such that \varphi \prime + \mu \varphi = f , so that assuming the condition
\varphi 
\pi \in X, for almost every a \in (0, a\dagger ) we have

(3.19)

\varphi (a)

\pi (a)
= \varphi (0) +

\int a

0

\varphi \prime (s)\pi (s) + \mu (s)\pi (s)\varphi (s)

\pi 2(s)
ds

=

\int a\dagger 

0

\beta (a)\varphi (a) da+

\int a

0

f(s)

\pi (s)
ds.

Denoting by I :=
\int a\dagger 
0

\beta (a)\varphi (a) da and i(a) =
\int a\dagger  - a

0
\beta (x) \pi (x)

\pi (a+x)\varphi (a+ x) dx, it follows

from (3.19) that we have

\varphi (a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\varphi (a+ x) dx =

\int a

0

f(s)

\pi (s)
ds+ I  - i(a).

Let us show that the map

(3.20) a \mapsto \rightarrow 

\int a

0

f(s)

\pi (s)
ds+ I  - i(a)

a

is in L2[0, a\dagger ]. By Hardy's inequality (see [12, p. 240]), the map a \mapsto \rightarrow 
\int a
0

f(s)
\pi (s)

ds

a lies
in L2[0, a\dagger ]. For the second term in the numerator of (3.20) we note that for almost
every a \in (0, a\dagger ) we have

d

da
(I - i(a)) =  - \beta (a\dagger  - a)\pi (a\dagger  - a)

\biggl( 
\varphi (0) +

\int a\dagger 

0

f(s)

\pi (s)
ds

\biggr) 
 - 
\int a\dagger  - a

0

\beta (x)\pi (x)
f(a+ x)

\pi (a+ x)
dx,

so that the map a \mapsto \rightarrow d
da (I - i(a)) is in L2[0, a\dagger ]. It follows that the map F : a \mapsto \rightarrow I - i(a)

satisfies F \in H1[0, a\dagger ] with F (0) = 0, so that from Hardy's inequality (see [12, p. 240])

the map a \mapsto \rightarrow F (a)
a is in L2[0, a\dagger ]. Consequently, from (3.20) we have \varphi \in \scrR .
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4. Some controllability results. In this section we investigate some control-
lability properties of system (1.1).

We first note that the following null controllability result holds.

Proposition 4.1. For every \tau > a\dagger  - a0, we have Ran \BbbT \tau \subset \scrR , where \scrR has
been defined in (3.2). Consequently, if \beta satisfies (1.4), then system (1.1) is null
controllable in any time \tau > a\dagger  - a0.

Proof. Without loss of generality, we can assume that a\dagger  - a0 < \tau < a\dagger . Indeed,
for \tau \geqslant a\dagger , the result follows using the semigroup property and replacing p0 by \BbbT \varepsilon p0
for some convenient \varepsilon > 0. Let \~p \in Ran \BbbT \tau . Then from (2.4) there exists p0 \in X such
that

(4.1) \~p(a) =

\left\{   
\pi (a)

\pi (a - \tau )
p0(a - \tau ) if \tau \leqslant a,

\pi (a)b(\tau  - a) if \tau > a

(a \in [0, a\dagger ] a.e.),

with b(t) =
\int a\dagger 
0

\beta (a)(\BbbT tp0)(a) da. Consequently, for almost every a \in (0, \tau ) we have
\~p(a)
\pi (a) = b(\tau  - a), and for almost every a \in (\tau , a\dagger ) we have \~p(a)

\pi (a) = p0(a - \tau )
\pi (a - \tau ) . Hence, the

function a \mapsto \rightarrow \~p
\pi is in L2[0, a\dagger ]. From this it is easy to check that

(4.2) a \mapsto \rightarrow 
\~p(a)
\pi (a)  - 

\int a\dagger  - a

0
\beta (x) \pi (x)

\pi (a+x) \~p(a+ x) dx\int a

0
m(x)
\pi (x) dx

is in L2[\varepsilon , a\dagger ] for every \varepsilon > 0. To show that \~p \in \scrR , we still have to check that the
map defined in (4.2) is in L2[0, \varepsilon ] for every \varepsilon > 0 small enough. To this aim, applying
first (2.4) we note that, for almost every a \in (0, \varepsilon ),

\~p(a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx

= b(\tau  - a) - 
\int \tau  - a

0

\beta (x)\pi (x)b(\tau  - (a+ x)) dx - 
\int a\dagger  - a

\tau  - a

\beta (x)\pi (x)
p0(a+ x - \tau )

\pi (a+ x - \tau )
dx.

Moreover, using (2.5) it follows that for every a \in (0, \varepsilon ) we have

b(\tau  - a) =

\int \tau  - a

0

\beta (x)\pi (x)b(\tau  - (a+ x)) dx+

\int a\dagger 

\tau  - a

\beta (x)\pi (x)
p0(a+ x - \tau )

\pi (a+ x - \tau )
dx.

We can thus combine the last two formulas to obtain that for almost every a \in (0, \varepsilon )
we have

\~p(a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx =

\int a\dagger 

a\dagger  - a

\beta (x)\pi (x)
p0(a+ x - \tau )

\pi (a+ x - \tau )
dx.

Since \beta \in L\infty [0, a\dagger ] and \pi is a decreasing function, it follows that for almost every
a \in (0, \varepsilon ),

(4.3)

\bigm| \bigm| \bigm| \bigm| \~p(a)\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx

\bigm| \bigm| \bigm| \bigm| \leqslant \| \beta \| L\infty [0,a\dagger ]

\int a\dagger  - \tau +a

a\dagger  - \tau 

| p0(s)| ds.

On the other hand, Hardy's inequality (see, for instance, [12, p. 240]) ensures that

a \mapsto \rightarrow 
\int a

0
| p0(s+ (a\dagger  - \tau ))| ds

a
\in L2[0, \varepsilon ],

and hence \~p \in \scrR .
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To obtain the null controllability assertion it suffices to combine the inclusions
Ran \BbbT \tau \subset \scrR , which we have just proved, and \scrR \subset Ran \Phi \tau , which was proved in
Theorem 3.2.

The result below and the following one answer an open question raised in [8], and
it essentially asserts that, with an extra assumption, the system can be ``positively""
steered from any positive initial state in X to any positive state in \scrR by means of an
L2 control. More precisely, we have the following.

Theorem 4.2. Let the assumptions of Theorem 1.1 be satisfied. Let p0 \in X and
\~p \in \scrR . Then for every \tau > a\dagger  - a0 there exists a control u \in L2([0, \tau ];L2[0, a\dagger ]) such
that the controlled solution p of (1.1) satisfies

p(\tau , a) = \~p(a) (a \in (0, a\dagger ) a.e.).

Moreover, if p0(a) \geqslant 0 and \~p(a) \geqslant 0 for almost every a \in (0, a\dagger ), then the control can
be chosen such that the controlled state trajectory remains positive, i.e., such that for
every t \in [0, \tau ] we have

p(t, a) \geqslant 0 (a \in [0, a\dagger ] a.e.).

Proof. We give the proof in the case \tau \in (a\dagger  - a0, a\dagger ).
We set z = p  - \~p. The aim is to find a control function u \in L2([0, \tau ];L2[0, a\dagger ])

such that z(\tau ) = 0 and p(t, a) \geqslant 0 for almost every (t, a) \in Q\tau . To achieve this goal
we set

z(t) = \BbbT tp0 +\Phi tu - \~p (t \geqslant 0).

Since from Theorem 3.2 and Proposition 4.1 we have \~p - \BbbT \tau p0 \in \scrR we can apply the
construction in Theorem 3.2 to obtain a control u \in L2([0, \tau ];L2[0, a\dagger ]) such that

\Phi \tau u = \~p - \BbbT \tau p0.

The corresponding state trajectory will satisfy, in particular, the condition p(\tau , \cdot ) = \~p.
To prove the positivity of the state trajectory constructed above we first assume

that p0 and \~p are continuous on [0, a\dagger ]. Then the control u described in Remark 3.3
is of the form u(t, a) = v(t  - a), with v continuous on each one of the intervals
[ - a\dagger , \tau  - a\dagger ], [\tau  - a\dagger , 0], and [0, \tau ]. Moreover, the corresponding state trajectory p,
also described in Remark 3.3, is continuous on each one of the domains Q1

\tau , Q
2
\tau , and

Q3
\tau , where

Q1
\tau = \{ (t, a) \in Q\tau |  - a\dagger \leqslant t - a < \tau  - a\dagger \} ,
Q2

\tau = \{ (t, a) \in Q\tau | \tau  - a\dagger \leqslant t - a \leqslant 0\} ,
Q3

\tau = \{ (t, a) \in Q\tau | 0 < t - a \leqslant \tau \} .
Since the initial condition p0 is assumed positive and the control u vanishes on Q1

\tau ,
the solution p of the controlled system (1.1) is positive on Q1

\tau . Indeed, from (2.9) we
have

(4.4) p(t, a) =
\pi (a)

\pi (a - t)
p0(a - t) ((t, a) \in Q1

\tau ).

Moreover, if (t, a) \in Q2
\tau with a \geqslant a0, using (2.9) we have

(4.5) p(t, a) =
\pi (a)

\pi (a - t)
p0(a - t) + v(t - a)

\int a0

a - t

\pi (a)

\pi (s)
ds ((t, a) \in Q2

\tau , a \geqslant a0).
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It follows from the above formula that for every (t, a) \in Q2
\tau with a \geqslant a0 we have

(4.6) \~p(\tau  - (t - a)) = p(\tau , \tau  - (t - a)) =
\pi (\tau  - (t - a))

\pi (a - t)
p0(a - t)

+ v(t - a)

\int a0

a - t

\pi (\tau  - (t - a))

\pi (s)
ds ((t, a) \in Q2

\tau , a \geqslant a0).

By combining (4.5) and (4.6) we get

(4.7) p(t, a) =
\pi (a)

\pi (\tau  - (t - a))
\~p(\tau  - (t - a)) ((t, a) \in Q2

\tau , a \geqslant a0).

Since the target \~p is assumed positive, it follows from (4.7) that the solution p of the
controlled system (1.1) is positive on the subdomain \{ (t, a) \in Q2

\tau , a \geqslant a0\} .
If (t, a) \in Q3

\tau with a \geqslant a0, using (2.9) we have

(4.8) p(t, a) = \pi (a)\~b(t - a) + v(t - a)

\int a0

0

\pi (a)

\pi (s)
ds ((t, a) \in Q3

\tau , a \geqslant a0).

It follows from the above formula that for every (t, a) \in Q3
\tau with a \geqslant a0 we have

(4.9) \~p(\tau  - (t - a)) = \pi (\tau  - (t - a))\~b(t - a)

+ v(t - a)

\int a0

0

\pi (\tau  - (t - a))

\pi (s)
ds ((t, a) \in Q3

\tau , a \geqslant a0),

so that using (4.8) and (4.9) we get

(4.10) p(t, a) =
\pi (a)

\pi (\tau  - (t - a))
\~p(\tau  - (t - a)) ((t, a) \in Q3

\tau , a \geqslant a0).

Since the target \~p is assumed positive, it follows from (4.10) that the solution p of
the controlled system (1.1) is positive on the subdomain \{ (t, a) \in Q3

\tau , a \geqslant a0\} .
In particular, using (4.7) and (4.10), the solution p is positive along the red curve
represented in Figure 1.

It remains to show the positivity of the controlled solution p into the subregions
\{ (t, a) \in Q2

\tau , a \leqslant a0\} and \{ (t, a) \in Q3
\tau , a \leqslant a0\} . To this aim, note first that if

(t, a) \in Q2
\tau with a \leqslant a0, then from (2.9) we have

(4.11) p(t, a) = \pi (a)

\biggl( 
p0(a - t)

\pi (a - t)
+ v(t - a)

\int a

a - t

m(s)

\pi (s)
ds

\biggr) 
((t, a) \in Q2

\tau , a \leqslant a0).

Let us show that the density p(t, a) is positive along each characteristic line t - a = c,
with c \in [\tau  - a\dagger , 0] and a \leqslant a0. Note first that if c \in [\tau  - a\dagger , 0], then for every
(t, a) \in Q2

\tau with a \leqslant a0 and t - a = c, from (4.11) we have

(4.12) p(a+ c, a) = \pi (a)

\biggl( 
p0( - c)

\pi ( - c)
+ v(c)

\int a

 - c

m(s)

\pi (s)
ds

\biggr) 
.

If v(c) \geqslant 0, then from the above formula (4.12) the density p(t, a) is clearly positive
along the characteristic line t  - a = c. If v(c) < 0, the control acts like a retrieval
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736 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

of individuals so that along the characteristic line t  - a = c the population density
decreases and must achieve its minimum value on the red vertical line represented in
Figure 1, the minimum of which is positive due to (4.7) and the fact that the solution
p is continuous on Q2

\tau . In fact, with c fixed in [\tau  - a\dagger , 0], in the case where v(c) < 0,
the quantity

p0( - c)

\pi ( - c)
+ v(c)

\int a

 - c

m(s)

\pi (s)
ds

is a decreasing expression of a which attains its positive minimum for a = a0. It
follows that p(t, a) \geqslant 0 for almost every (t, a) \in Q2

\tau with a \leqslant a0.
Similar arguments can be used to show the positivity of the solution p on \{ (t, a) \in 

Q3
\tau , a \leqslant a0\} . Indeed, if (t, a) \in Q3

\tau with a \leqslant a0, then from (2.9) we have

(4.13) p(t, a) = \pi (a)

\biggl( 
\~b(t - a) + v(t - a)

\int a

0

m(s)

\pi (s)
ds

\biggr) 
((t, a) \in Q3

\tau , a \leqslant a0),

with

(4.14) \~b(t) =

\int a\dagger 

ab

\beta (a)p(t, a) da (t \in [0, \tau ]).

From (4.4), (4.7), (4.10), and (4.14) it follows that we have \~b(t) \geqslant 0 for every t \in [0, \tau ],
since the density p(t, a) is positive for a \geqslant ab \geqslant a0. Distinguish again the cases
v(t - a) \geqslant 0 and v(t - a) < 0 in (4.13), and using the positivity and the continuity of
p along the red and green lines represented in Figure 1 provides the positivity of the
controlled solution p on the subdomain \{ (t, a) \in Q3

\tau , a \leqslant a0\} .
The case where p0 \in X and \~p \in \scrR are not necessarily continuous can be deduced

from a density argument. Indeed, it suffices to note that it follows from Remark 3.3
that if (p0,n)n\geqslant 1 \subset X and (\~pn)n\geqslant 1 \subset \scrR are such that p0,n \rightarrow p0 and \~pn \rightarrow \~p, then
the corresponding state trajectories satisfy pn \rightarrow p in L2(Q\tau ).

Remark 4.3. The control and the state trajectory constructed in the above proof
can be explicitly written in terms of p0 and \~p. Indeed, applying the formulas in
Remark 3.3, with \~p - \BbbT \tau p0 instead of \~p and after some calculations, it can be checked
that for almost every (t, a) \in Q\tau we have

u(t, a) =

\left\{                   

0 if t - a < \tau  - a\dagger ,

\~p(\tau +(a - t))
\pi (\tau +(a - t))  - 

p0(a - t)
\pi (a - t)\int \tau +(a - t)

a - t
m(x)
\pi (x) dx

if \tau  - a\dagger \leqslant t - a \leqslant 0,

\~p(\tau  - (t - a)) - \pi (\tau  - (t - a))\eta (t - a)

\pi (\tau  - (t - a))
\int \tau  - (t - a)

0
m(x)
\pi (x) dx

if 0 < t - a \leqslant \tau ,

where

\eta (s) =

\int s+a\dagger  - \tau 

ab

\beta (x)\pi (x)
\~p(\tau  - (s - x))

\pi (\tau  - (s - x))
dx+

\int a\dagger 

s+a\dagger  - \tau 

\beta (x)\pi (x)
p0(x - s)

\pi (x - s)
dx (s \in [0, \tau ]).
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Moreover, for almost every (t, a) \in Q\tau , we have

p(t, a) =

\left\{                                                   

\pi (a)

\pi (a - t)
p0(a - t) if t - a < \tau  - a\dagger ,

\pi (a)

\pi (a - t)
p0(a - t)

\left[  1 - \int a

a - t
m(x)
\pi (x) dx\int a+(\tau  - t)

a - t
m(x)
\pi (x) dx

\right]  
+ \pi (a)

\int a

a - t
m(s)
\pi (s) ds\int \tau +(a - t)

a - t
m(s)
\pi (s) ds

\~p(\tau + (a - t))

\pi (\tau + (a - t))
if \tau  - a\dagger \leqslant t - a \leqslant 0,

\pi (a)\eta (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  
+ \pi (a)

\int a

0
m(x)
\pi (x) dx\int \tau  - (t - a)

0
m(x)
\pi (x) dx

\~p(\tau  - (t - a))

\pi (\tau  - (t - a))
if 0 < t - a \leqslant \tau .

We show below that the result in Theorem 4.2 applies for target states that are
stationary solutions of (1.1), which is the case investigated in [8].

Proof of Theorem 1.1. According to Theorem 4.2, we only have to show that any
solution \~p of (1.2) satisfies \~p \in \scrR .

From [8] it follows that any solution \~p of (1.2) is given by

(4.15) \~p(a) = C\pi (a) +

\int a

0

\pi (a)

\pi (\sigma )
m(\sigma )w(\sigma ) d\sigma (a \in (0, a\dagger )),

where C is determined through

(4.16) (1 - R)C =

\int a\dagger 

0

\beta (x)\pi (x)

\int x

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma dx,

and R is the reproductive number of the population given by

R =

\int a\dagger 

0

\beta (a)\pi (a) da.

From (4.15) it follows that for almost every a \in (0, a\dagger ) we have

\~p(a)

\pi (a)
= C +

\int a

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma ,

so that \~p
\pi \in L2[0, a\dagger ]. Moreover, for almost every a \in (0, a\dagger ) we have from (4.15) that

\~p(a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx

= C +

\int a

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma  - 

\int a\dagger  - a

0

\beta (x)\pi (x)

\biggl[ 
C +

\int a+x

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma 

\biggr] 
dx,
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so that for almost every a \in (0, a\dagger ) we have

(4.17)
\~p(a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx

=

\int a

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma + C

\biggl( 
1 - 

\int a\dagger  - a

0

\beta (x)\pi (x) dx

\biggr) 
 - 
\int a\dagger  - a

0

\beta (x)\pi (x)

\int a+x

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma dx.

Define \scrG :=
\int a\dagger 
0

\beta (x)\pi (x)
\int x

0
m(\sigma )
\pi (\sigma ) w(\sigma ) d\sigma dx such that from (4.16) we have (1 - R)C =

\scrG . Define

r(a) :=

\int a\dagger  - a

0

\beta (x)\pi (x) dx and g(a) :=

\int a\dagger  - a

0

\beta (x)\pi (x)

\int a+x

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma dx.

Then (4.17) yields that for almost every a \in (0, a\dagger ) we have

(4.18)

\~p(a)

\pi (a)
 - 
\int a\dagger  - a

0

\beta (x)
\pi (x)

\pi (a+ x)
\~p(a+ x) dx

=

\int a

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma + C(1 - r(a)) - g(a)

=

\int a

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma + C(R - r(a)) + (\scrG  - g(a)).

Let us show that the map

(4.19) a \mapsto \rightarrow 

\int a

0
m(\sigma )
\pi (\sigma ) w(\sigma ) d\sigma + C(R - r(a)) + (\scrG  - g(a))

a

is in L2[0, a\dagger ]. By Hardy's inequality (see [12, p. 240]), the map

a \mapsto \rightarrow 

\int a

0
m(\sigma )
\pi (\sigma ) w(\sigma ) d\sigma 

a

lies in L2[0, a\dagger ]. For the second term at the numerator in (4.19) we note that for
almost every a \in (0, a\dagger ) we have

| R - r(a)| =
\int a\dagger 

a\dagger  - a

\beta (x)\pi (x) dx

\leqslant a\| \beta \| L\infty [0,a\dagger ],

so that the map a \mapsto \rightarrow R - r(a)
a is in L2[0, a\dagger ].

We still have to tackle the third term at the numerator in (4.19). Toward this
goal we note that for almost every a \in (0, a\dagger ) we have

(4.20)
d

da
(\scrG  - g(a)) =  - \beta (a\dagger  - a)\pi (a\dagger  - a)

\int a\dagger 

0

m(\sigma )

\pi (\sigma )
w(\sigma ) d\sigma 

 - 
\int a\dagger  - a

0

\beta (x)\pi (x)
m(a+ x)

\pi (a+ x)
w(a+ x) dx,
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so that the map a \mapsto \rightarrow d
da (\scrG  - g(a)) is in L2[0, a\dagger ]. It follows that the map F : a \mapsto \rightarrow 

\scrG  - g(a) satisfies F \in H1[0, a\dagger ] with F (0) = 0, so that from Hardy's inequality (see

[12, p. 240]) the map a \mapsto \rightarrow F (a)
a is in L2[0, a\dagger ]. Consequently, from (4.19) we have

\~p \in \scrR .

Remark 4.4. The method used above to prove Theorem 1.1 cannot be adapted
to the case in which the state space X = L2[0, a\dagger ] is substituted by X = L1[0, a\dagger ].
Indeed, if w and \~p are in L1, the fact that \~p is in \scrR no longer holds in general. Indeed,
the map

a \mapsto \rightarrow 

\int a

0
m(\sigma )
\pi (\sigma ) w(\sigma ) d\sigma 

a

does not necessarily belong to L1[0, a\dagger ] for any w \in L1[0, a\dagger ] (see Hardy's inequality
[12]). However, the inclusion Ran \BbbT \tau \subset Ran \Phi \tau remains true for every \tau > a\dagger  - a0;
see Appendix A.

5. A singular perturbation problem. In this section we study the behav-
ior of the null controls constructed in section 4, together with the behavior of the
corresponding state trajectories, when the age interval in which the control is active
shrinks to the singleton \{ 0\} . Not surprisingly, we show that the null controls converge
to a null control for a system in which the input appears in an additive manner in
the formula giving the birth rate. The control in this limit system can be seen as an
``impulse"" (in the age domain) type of control or, simpler, as a direct control of the
birth rate. Similar singular perturbation problems for the wave or for the Schr\"odinger
equations have been studied in Fabre [9], Fabre and Puel [10, 11], and Joly [15].

To be more precise, we consider the control system (1.1) for a0 = \varepsilon \in (0, a\dagger ).
According to Proposition 4.1, given \varepsilon > 0, for every p0 \in X = L2[0, a\dagger ] there exists
u\varepsilon \in L2([0, a\dagger ];X) such that the solution of

(5.1)

\left\{           
\.p\varepsilon (t, a) +

\partial p\varepsilon 

\partial a
(t, a) + \mu (a)p\varepsilon (t, a) = 1[0,\varepsilon ](a)u

\varepsilon (t, a), (t, a) \in (0, a\dagger )
2,

p\varepsilon (t, 0) =

\int a\dagger 

0

\beta (a)p\varepsilon (t, a) da, t \in (0, a\dagger ),

p\varepsilon (0, a) = p0(a), a \in (0, a\dagger ),

satisfies

(5.2) p\varepsilon (a\dagger , a) = 0 (a \in (0, a\dagger )).

Moreover, by a slight variation of the calculations used to derive the formula in Re-
mark 4.3, it is easy to check that the control u\varepsilon defined by
(5.3)

u\varepsilon (t, a) =

\left\{       
 - 

\int a\dagger 
t - a

\beta (x)\pi (x)p0(x - (t - a))
\pi (x - (t - a)) dx\int a\dagger  - (t - a)

0

1[0,\varepsilon ](x)

\pi (x) dx
((t, a) \in (0, a\dagger )

2, t - a \geqslant 0),

0 ((t, a) \in (0, a\dagger )
2, t - a < 0)

satisfies the above conditions. With u\varepsilon defined by (5.3), the controlled density p\varepsilon 
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solution of (5.1) is given by

(5.4) p\varepsilon (t, a) =

\left\{           
\pi (a)

\pi (a - t)
p0(a - t) if t - a < 0,

\pi (a)\eta (t - a)

\left[  1 - \int a

0

1[0,\varepsilon ](x)

\pi (x) dx\int a\dagger  - (t - a)

0

1[0,\varepsilon ](x)

\pi (x) dx

\right]  if 0 < t - a \leqslant a\dagger ,

where

\eta (s) =

\int a\dagger 

s

\beta (x)\pi (x)
p0(x - s)

\pi (x - s)
dx (s \in [0, a\dagger ]).

We also consider the following boundary controlled system, already studied in [8]:

(5.5)

\left\{           
\.p(t, a) +

\partial p

\partial a
(t, a) + \mu (a)p(t, a) = 0, (t, a) \in (0, a\dagger )

2,

p(t, 0) =

\int a\dagger 

0

\beta (a)p(t, a) da+ v(t), t \in (0, a\dagger ),

p(0, a) = p0(a), a \in (0, a\dagger ),

where v \in L2([0, a\dagger ]). Using a recursive argument as in the proof of Theorem 3.2, it
can be easily shown that, taking

(5.6) v(t) :=  - 
\int a\dagger 

t

\beta (a)
\pi (a)

\pi (a - t)
p0(a - t) da (t \in [0, a\dagger ]),

the solution p of (5.5) satisfies

(5.7) p(a\dagger , a) = 0 (a \in (0, a\dagger )).

More precisely, with v defined by (5.6), the controlled density p solution of (5.5) is
given by

(5.8) p(t, a) =

\left\{   
\pi (a)

\pi (a - t)
p0(a - t) if t \leqslant a,

0 if t > a.

The main result of this section is as follows.

Theorem 5.1. Given p0 \in L2([0, a\dagger ]), consider the family of distributed controls
(u\varepsilon )\varepsilon \in (0,a\dagger ) in L2([0, a\dagger ];L

2([0, a\dagger ])) and the boundary control v in L2[0, a\dagger ], respec-
tively, defined by (5.3) and (5.6). Then we have

1. lim\varepsilon \rightarrow 0+ u\varepsilon 
1[0,\varepsilon ] = v\delta 0 weakly in L2([0, a\dagger ],\scrD (A\ast )\prime ), where \delta 0 stands for the

Dirac mass concentrated at the origin;
2. lim\varepsilon \rightarrow 0+ \| p\varepsilon  - p\| C([0,a\dagger ];L2([0,a\dagger ])) = 0, where p is the solution of (5.5).

Proof. Let \varepsilon \in (0, a\dagger /2). It is easy to check that every function in \scrD (A\ast ) belongs
to H1(0, a\ast ) for every a\ast \in (0, a\dagger ). In particular, for every \varphi \in L2([0, a\dagger ],\scrD (A\ast )) and
every t \in [0, a\dagger ], we have \varphi (t, \cdot ) \in L\infty (0, a\dagger /2).

We introduce the following notation:
(5.9)

f(t, a) :=

\left\{      - 
\int a\dagger 

t - a

\beta (x)\pi (x)
p0(x - (t - a))

\pi (x - (t - a))
dx ((t, a) \in (0, a\dagger )

2, t - a \geqslant 0),

0 ((t, a) \in (0, a\dagger )
2, t - a < 0),
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and

(5.10) k\varepsilon (t, a) :=

\int a\dagger  - (t - a)

0

1[0,\varepsilon ](x)

\pi (x)
dx ((t, a) \in (0, a\dagger )

2),

so that from (5.3), (5.9), and (5.10) we have

u\varepsilon (t, a) =
f(t, a)

k\varepsilon (t, a)
((t, a) \in (0, a\dagger )

2).

Let \varphi \in L2([0, a\dagger ],\scrD (A\ast )), and denote
(5.11)

g\varepsilon (t) :=

\int a\dagger 

0

1[0,\varepsilon ](a)u
\varepsilon (t, a)\varphi (t, a) da =

\int \varepsilon 

0

f(t, a)

k\varepsilon (t, a)
\varphi (t, a) da (t \in [0, a\dagger ]).

The aim is to show that lim\varepsilon \rightarrow 0 g\varepsilon = v\varphi (\cdot , 0) in L2[0, a\dagger ]. To this aim, we use
Lebesgue's dominated convergence theorem. First, let us show that for every t \in [0, a\dagger ]
we have the following pointwise convergence:

(5.12) lim
\varepsilon \rightarrow 0+

g\varepsilon (t) = v(t)\varphi (t, 0) (t \in [0, a\dagger ]).

For every t \in [0, a\dagger ), take \varepsilon < a\dagger  - t small enough so that \varepsilon < a\dagger  - (t  - a) for
every a \in (0, \varepsilon ). It follows from (5.10) that we have

(5.13) k\varepsilon (t, a) =

\int \varepsilon 

0

dx

\pi (x)
(a \in (0, \varepsilon )),

so that from (5.11) and (5.13) we have

g\varepsilon (t) =
1\int \varepsilon 

0
1

\pi (x) dx

\int \varepsilon 

0

f(t, a)\varphi (t, a) da,

and, using the last formula and the fact that f(t, 0) = v(t), we have

(5.14) lim
\varepsilon \rightarrow 0

g\varepsilon (t) = v(t)\varphi (t, 0) (t \in [0, a\dagger [).

For t = a\dagger , it follows from (5.10) that we have

(5.15) k\varepsilon (a\dagger , a) =

\int a

0

dx

\pi (x)
(a \in (0, \varepsilon )),

so that from (5.11) and (5.15) we have

g\varepsilon (a\dagger ) =

\int \varepsilon 

0

f(a\dagger , a)\int a

0
1

\pi (x) dx
\varphi (a\dagger , a) da,

and, using the above formula, together with the fact that v(a\dagger ) = 0, we obtain that

(5.16) lim
\varepsilon \rightarrow 0

g\varepsilon (a\dagger ) = v(a\dagger )\varphi (a\dagger , 0).

Consequently, it follows from (5.14) and (5.16) that the pointwise convergence (5.12)
holds for every t \in [0, a\dagger ].
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742 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

Second, let us find a function h \in L2[0, a\dagger ] such that

(5.17) | g\varepsilon (t)| \leqslant h(t) (\varepsilon \in (0, a\dagger /2), t \in [0, a\dagger ]).

It is easy to check that for every t \in [0, a\dagger  - \varepsilon ] we have

(5.18) k\varepsilon (t, a) =

\int \varepsilon 

0

dx

\pi (x)
if a \in (0, \varepsilon )),

and for every t \in [a\dagger  - \varepsilon , , a\dagger ] we have

(5.19) k\varepsilon (t, a) =

\left\{         
\int a\dagger  - (t - a)

0

dx

\pi (x)
if a \in (0, \varepsilon + t - a\dagger ),\int \varepsilon 

0

dx

\pi (x)
if a \in (\varepsilon + t - a\dagger , \varepsilon ).

It follows from (5.11), (5.18), and (5.19) that we have

(5.20) g\varepsilon (t) =

\left\{                     

1\int \varepsilon 

0
1

\pi (x) dx

\int \varepsilon 

0

f(t, a)\varphi (t, a) da (t \in [0, a\dagger  - \varepsilon ]),\int \varepsilon +t - a\dagger 

0

f(t, a)\varphi (t, a)\int a\dagger  - (t - a)

0
1

\pi (x) dx
da

+
1\int \varepsilon 

0
1

\pi (x) dx

\int \varepsilon 

\varepsilon +t - a\dagger 

f(t, a)\varphi (t, a) da (t \in [a\dagger  - \varepsilon , a\dagger ]).

For every t \in [0, a\dagger  - \varepsilon ], since f \in L\infty ([0, a\dagger ]
2) and \varphi (t, \cdot ) \in L\infty ([0, a\dagger /2]), from (5.20)

we get

(5.21) | g\varepsilon (t)| \leqslant \| f\| L\infty ([0,a\dagger ]2)\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2]).

For every t \in [a\dagger  - \varepsilon , a\dagger ], from (5.20) we have

(5.22) | g\varepsilon (t)| \leqslant 
\int \varepsilon 

0

f(t, a)\varphi (t, a)

a\dagger  - (t - a)
da+

1

\varepsilon 

\int \varepsilon 

0

f(t, a)\varphi (t, a) da.

Since p0 \in L2[0, a\dagger ], the Cauchy--Schwarz inequality gives

(5.23) | f(t, a)| \leqslant K\| p0\| L2(0,a\dagger )

\sqrt{} 
a\dagger  - (t - a)

for some constant K \geqslant 0. It follows from (5.22) and (5.23) that we have

(5.24) | g\varepsilon (t)| \leqslant K\| p0\| L2(0,a\dagger )\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2])

\int a\dagger /2

0

da\sqrt{} 
a\dagger  - (t - a)

+ \| f\| L\infty ([0,a\dagger ]2)\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2]),

and the following majoration holds:
(5.25)

| g\varepsilon (t)| \leqslant 2K\| p0\| L2(0,a\dagger )\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2])

\sqrt{} 
3a\dagger /2+\| f\| L\infty ([0,a\dagger ]2)\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2]).
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Define, for every t \in [0, a\dagger ],
(5.26)

h(t) := 2K\| p0\| L2(0,a\dagger )\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2])

\sqrt{} 
3a\dagger /2 + \| f\| L\infty ([0,a\dagger ]2)\| \varphi (t, \cdot )\| L\infty ([0,a\dagger /2]).

It follows from (5.21) and (5.25) that for every \varepsilon \in (0, a\dagger /2) and every t \in [0, a\dagger ], we
have

(5.27) | g\varepsilon (t)| \leqslant h(t) (\varepsilon \in (0, a\dagger /2), t \in [0, a\dagger ]),

with h \in L2([0, a\dagger ]). The pointwise convergence (5.12) and the above domination
(5.27) gives

(5.28) lim
\varepsilon \rightarrow 0

g\varepsilon = v\varphi (\cdot , 0) in L2[0, a\dagger ],

so that we have

(5.29) lim
\varepsilon \rightarrow 0+

u\varepsilon 
1[0,\varepsilon ] = v\delta 0 weakly in L2([0, a\dagger ],\scrD (A\ast )\prime ).

Concerning the convergence of the state trajectories, it follows from (5.4) and (5.8)
that for every t \in [0, a\dagger ],

(5.30)

\int a\dagger 

0

| p\varepsilon (t, a) - p(t, a)| 2 da \leqslant \| \eta \| 2L\infty [0,a\dagger ]

\int \varepsilon 

0

\left(  1 - 

\int a

0

1[0,\varepsilon ](x)

\pi (x) dx\int a\dagger  - (t - a)

0

1[0,\varepsilon ](x)

\pi (x) dx

\right)  2

da

\leqslant \| \eta \| 2L\infty [0,a\dagger ]
\varepsilon .

The convergence stated in Theorem 5.1 easily follows from (5.30).

6. Control of an infection-age model. The methodology developed in the
previous sections is essentially applicable to linear systems. However, the fact that
controls are explicitly determined by calculations along characteristics allows us, in
some particular situations, to tackle nonlinear systems. The aim of this section is
thus to provide an example of application of our methods for a nonlinear controlled
infection-age model, written as

(6.1)

\left\{               

dS

dt
(t) =  - S(t)

\int a\dagger 

0

\beta (a)i(t, a) da,

\partial i

\partial t
(t, a) +

\partial i

\partial a
(t, a) =  - \mu (a)i(t, a) - m(a)u(t, a),

i(t, 0) = S(t)

\int a\dagger 

0

\beta (a)i(t, a) da,

with the initial condition

S(0) = S0 \geqslant 0 and i(0, \cdot ) = i0 \in L2
+[0, a\dagger ].

In the model (6.1), the population is decomposed into the class (S) of susceptible
individuals and the class (I) of infected individuals. The number of individuals in the
class (S) at time t is S(t). The age of infection a \in [0, a\dagger ] is the time since the infection
began (where a\dagger denotes the maximum age of the epidemic), and i(t, a) is the density
of infected individuals with respect to the age infection. That is to say that for two
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744 NICOLAS HEGOBURU, PIERRE MAGAL, AND MARIUS TUCSNAK

given age values a1, a2 : 0 \leqslant a1 < a2 \leqslant a\dagger the number of infected individuals with age
of infection a between a1 and a2 is \int a2

a1

i(t, a) da.

The function \beta (a) is the force of infection at the age of infection a. We assume that
there exists ab \in (0, a\dagger ) such that

(6.2) \beta (a) = 0 (a \in (0, ab) a.e.),

that is to say, we interpret infection age to an exposed period (infected, but not yet
infectious) from a = 0 to a = ab and an infectious period from a = ab to a = a\dagger . The
quantity \int a\dagger 

0

\beta (a)i(t, a) da

is the number of infectious individuals within the subpopulation (I). Finally, \mu (a)
is the exit (mortality and/or recovery) rate of infected individuals with an age of
infection a \geqslant 0. As a consequence the quantity

\pi (a) := exp

\biggl( 
 - 
\int a

0

\mu (\sigma ) d\sigma 

\biggr) 
is the probability for an individual to stay in the class (I) after a period of time a \geqslant 0.

System (6.1) can be seen as a semilinear Cauchy problem in an appropriate Ba-
nach space, in which the closed linear operator is not densely defined (see, for instance,
Magal and Ruan [19, 20, 21]. In the above references, the existence and the unique-
ness of solutions, for a given L2 input function u, is proved by using a step-by-step
procedure which preserves the positivity of solutions. The global-in-time existence
and uniqueness follow since no finite time blowup occurs. Here, we aim to find a
control function u such that the density of infected individuals in the age-infection
model (6.1) becomes null in finite time. We suppose that m = 1[0,a0] is the charac-
teristic function of the interval (0,a0), with a0 \leqslant ab; this means that we are able to
control infected individuals that are not yet infectious. The below proposition shows
that by controlling the infected individuals (i.e., by using quarantine) before their
infectiousness period we can eradicate the epidemic in finite time.

Proposition 6.1. Let assumption (6.2) be satisfied. Let i0 \in L2[0, a\dagger ] with
i0(a) \geqslant 0 for almost every a \in (0, a\dagger ) and let S0 \geqslant 0. Then for every \tau > a\dagger  - a0
there exists a control u \in L2([0, \tau ];L2[0, a\dagger ]) such that the controlled density of infected
individuals i given by (6.1) satisfies

i(\tau , a) = 0 (a \in (0, a\dagger ) a.e.).

Moreover the controlled density of infected individuals remains positive, that is to say,

i(t, a) \geqslant 0 a.e. (t, a) \in Q\tau .

By a slight variation of the calculations in section 2 we can check that the solution
of (6.1) satisfies

(6.3) S(t) = S0exp

\biggl( 
 - 
\int t

0

\int a\dagger 

0

\beta (a)i(s, a) dads

\biggr) D
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and

(6.4) i(t, a) :=

\left\{     
\pi (a)

\pi (a - t)
i0(a - t) + c(t, a), t \leqslant a,

\pi (a)\~b(t - a) + c(t, a), a < t,

where

(6.5) c(t, a) :=

\left\{       
\int a

a - t

\pi (a)

\pi (s)
m(s)u(s - (a - t), s) ds, t \leqslant a,\int a

0

\pi (a)

\pi (s)
m(s)u(s+ (t - a), s) ds, a < t,

and t \mapsto \rightarrow \~b(t) is the unique continuous function satisfying the Volterra integral equation

(6.6) \~b(t) = S(t)

\Biggl\{ \int min(t,a\dagger )

0

\beta (a)
\Bigl[ 
\pi (a)\~b(t - a) + c(t, a)

\Bigr] 
da

+

\int a\dagger 

min(t,a\dagger )

\beta (a)

\biggl[ 
\pi (a)

\pi (a - t)
i0(a - t) + c(t, a)

\biggr] 
da

\Biggr\} 
.

Proof of Proposition 6.1. The remark suggesting the approach below is that, as-
suming S is a given function, the construction of the control in Theorem 4.2 and, more
precisely, in Remark 4.3 adapts to the controllability of the system formed by the last
two equations in (6.1). This motivates the construction of the control function below
for system (6.1).

As previously, we focus on the case where \tau \in ]a\dagger  - a0, a\dagger [.

Case \bfitt  - \bfita < 0. We first set

(6.7) u(t, a) =

\left\{       
0 if t - a < \tau  - a\dagger ,

i0(a - t)
\pi (a - t)\int \tau +(a - t)

a - t
m(x)
\pi (x) dx

if \tau  - a\dagger \leqslant t - a \leqslant 0,

so that from (6.4) and (6.7) we have

(6.8) i(t, a) =

\left\{           
\pi (a)

\pi (a - t)
i0(a - t) if t - a < \tau  - a\dagger ,

\pi (a)

\pi (a - t)
i0(a - t)

\left[  1 - \int a

a - t
m(x)
\pi (x) dx\int a+(\tau  - t)

a - t
m(x)
\pi (x) dx

\right]  if \tau  - a\dagger \leqslant t - a \leqslant 0.

Formula (6.8) clearly implies that

(6.9) i(\tau , a) = 0 (a \in (\tau , a\dagger ) a.e.).

Case 0 < \bfitt  - \bfita < \bfita \bfitb . Using (6.8), we are able to compute S(t) for every
t \in [0, ab]. Indeed, after an easy calculation using (6.8) it follows that for every
t \in [0, ab],

(6.10)

\int a\dagger 

0

\beta (a)i(t, a) da =

\int a\dagger 

ab

\beta (a)i(t, a) da =

\int a\dagger 

t+a\dagger  - \tau 

\beta (a)
\pi (a)

\pi (a - t)
i0(a - t) da.
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In what follows, we set

(6.11) f(t) :=

\int a\dagger 

t+a\dagger  - \tau 

\beta (a)
\pi (a)

\pi (a - t)
i0(a - t) da (t \in [0, \tau ]),

so that using (6.3), (6.10), and (6.11) we have

(6.12) S(t) = S0e
 - 

\int t
0
f(s)ds (t \in [0, ab]).

Then for every t \in [0, ab], using (6.2), (6.6), (6.10), and (6.12), we have

(6.13) \~b(t) = S(t)

\int a\dagger 

ab

\beta (a)i(t, a) da = S0f(t)e
 - 

\int t
0
f(s)ds (t \in [0, ab]).

Denoting by

(6.14) \chi (t) := S0f(t)e
 - 

\int t
0
f(s)ds (t \in [0, \tau ]),

it follows from (6.13) and (6.14) that we have \~b(t) = \chi (t) for every t \in [0, ab]. Then
we set for almost every (t, a) \in Q\tau with 0 < t - a \leqslant ab

(6.15) u(t, a) =
\chi (t - a)\int \tau  - (t - a)

0

m(x)

\pi (x)
dx

,

so that from (6.4) we have

(6.16) i(t, a) = \pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  if 0 < t - a \leqslant ab.

It follows from (6.16) that we have

(6.17) i(\tau , a) = 0 (a \in (\tau  - ab, \tau ) a.e.).

Case \bfitj \bfita \bfitb < \bfitt  - \bfita < (\bfitj  - 1)\bfita \bfitb for some integer \bfitj \geqslant 1. The above calculations
suggest, as a possible control, driving the initial state to u(t, a) where

(6.18) u(t, a) =

\left\{                   

0 if t - a < \tau  - a\dagger ,

i0(a - t)
\pi (a - t)\int \tau +(a - t)

a - t
m(x)
\pi (x) dx

if \tau  - a\dagger \leqslant t - a \leqslant 0,

\chi (t - a)\int \tau  - (t - a)

0
m(x)
\pi (x) dx

if 0 < t - a \leqslant \tau ,

where \chi is defined by (6.14). With u defined by (6.18), it can be checked using a
recursive argument as in the proof of Theorem 3.2 that we have

(6.19) S(t) = S0e
 - 

\int t
0
f(s)ds (t \in [jab, (j + 1)ab]),

which implies that

(6.20) \~b(t) = \chi (t) (t \in [jab, (j + 1)ab]),
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so that using (6.4), (6.18), and (6.20) we get

(6.21) i(t, a) = \pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  if jab < t - a \leqslant (j + 1)ab,

and it follows from the above formula (6.21) that we have

(6.22) i(\tau , a) = 0 (a \in [\tau  - (j + 1)ab, \tau  - jab] a.e.).

Finally, with u defined by (6.18) we have

i(t, a) =

\left\{                         

\pi (a)

\pi (a - t)
i0(a - t) if t - a < \tau  - a\dagger ,

\pi (a)

\pi (a - t)
i0(a - t)

\left[  1 - \int a

a - t
m(x)
\pi (x) dx\int a+(\tau  - t)

a - t
m(x)
\pi (x) dx

\right]  if \tau  - a\dagger \leqslant t - a \leqslant 0,

\pi (a)\chi (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  if 0 < t - a \leqslant \tau ,

where we recall that we have defined for every t \in [0, \tau ]

\chi (t) := S0f(t)e
 - 

\int t
0
f(s)ds,

so that the positivity of the controlled density i is clear. Moreover, it can be checked
that we have u \in L2([0, \tau ];L2[0, a\dagger ]), thanks to Hardy's inequality [12].

Appendix A. Null controllability in \bfitL \bfone [0, \bfita \dagger ]. In this appendix, we inves-
tigate the null controllability of system (1.1) when the state space X is chosen to be
L1[0, a\dagger ] instead of L2[0, a\dagger ].

Proposition A.1. For \tau > 0 we denote by (\BbbT \tau )\tau >0 and (\Phi \tau )\tau >0 the semigroup
acting on L1[0, a\dagger ] and the control to state maps, defined on L1[0, \tau ] with values in
L1[0, a\dagger ], defined according to Remark 2.2. Then for every \tau > a\dagger  - a0 we have that
Ran \BbbT \tau \subset Ran \Phi \tau , i.e., system (1.1), with state space X = L1[0, a\dagger ] and input space
U = L1[0, \tau ] is null controllable in any time \tau > a\dagger  - a0.

Proof. We can assume, without loss of generality, that a0 \leqslant ab. Let \tau \in (a\dagger  - 
a0, a\dagger ). Given p0 \in X, we look for a control u \in L1([0, \tau ];L1[0, a\dagger ]) such that the
solution p of (1.1) satisfies p(\tau , \cdot ) = 0. To this aim, we use the control constructed in
Remark 3.3 (with \~p = 0) with a slight modification (see Figure 2 for an illustration
of the modification). Let \delta \in (a\dagger  - a0, \tau ). We set

(A.1) u(t, a) =

\left\{                       

0 if t - a < \delta  - a\dagger ,

 - 
p0(a - t)
\pi (a - t)\int \tau +(a - t)

a - t
m(x)
\pi (x) dx

if \delta  - a\dagger \leqslant t - a \leqslant 0,

 - \eta (t - a)\int \tau  - (t - a)

0
m(x)
\pi (x) dx

if 0 < t - a \leqslant \delta ,

0 if \delta < t - a \leqslant \tau ,
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Fig. 2. In this figure, the control acts in the subset of Q\tau = [0, \tau ] \times [0, a\dagger ] delimited by the
line a = a0 and the red curve. The hatched region corresponds to the slight modification of the
control region (compared to the control pictured in Figure 1). Due to this modification, the value of
\~b(t) =

\int a\dagger 
0 \beta (a)p(t, a) da is null for every t \in [\delta , a\dagger ], and we can choose u(t, a) = 0 for \delta \leqslant t - a \leqslant a\dagger 

to avoid the singularity in the neighborhood of the point (\tau , 0). (Color available online.)

where

\eta (s) =

\int a\dagger 

s+a\dagger  - \delta 

\beta (x)\pi (x)
p0(x - s)

\pi (x - s)
dx (s \in [0, \delta ]).

With u defined by (A.1), it can be checked using a recursive argument as in the
proof of Theorem 3.2 that we have
(A.2)

p(t, a) =

\left\{                         

\pi (a)

\pi (a - t)
p0(a - t) if t - a < \delta  - a\dagger ,

\pi (a)

\pi (a - t)
p0(a - t)

\left[  1 - \int a

a - t
m(x)
\pi (x) dx\int a+(\tau  - t)

a - t
m(x)
\pi (x) dx

\right]  if \delta  - a\dagger \leqslant t - a \leqslant 0,

\pi (a)\eta (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  if 0 < t - a \leqslant \delta .

It follows from (A.2) that we have

(A.3) p(\tau , a) = 0 (a \in [a\dagger  - \delta , a\dagger ] a.e.).
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If t \in [\delta , a\dagger ], it follows from (A.2) that we have

\~b(t) =

\int a\dagger 

ab

\beta (a)p(t, a)da = 0,

so that from (2.9) and (A.1) we get

(A.4) p(t, a) = 0 (\delta < t - a \leqslant \tau ).

It follows from (A.2) and (A.4) that the controlled density of population p is given by

p(t, a) =

\left\{                               

\pi (a)

\pi (a - t)
p0(a - t) if t - a < \delta  - a\dagger ,

\pi (a)

\pi (a - t)
p0(a - t)

\left[  1 - \int a

a - t
m(x)
\pi (x) dx\int a+(\tau  - t)

a - t
m(x)
\pi (x) dx

\right]  if \delta  - a\dagger \leqslant t - a \leqslant 0,

\pi (a)\eta (t - a)

\left[  1 - \int a

0
m(s)
\pi (s) ds\int \tau  - (t - a)

0
m(s)
\pi (s) ds

\right]  if 0 < t - a \leqslant \delta ,

0 if \delta < t - a \leqslant \tau ,

so that we have p(\tau , \cdot ) = 0 and the control u defined by (A.1) is in L1([0, \tau ];L1[0, a\dagger ]).
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